Analysis of Bluffing Behavior in Human-Humanoid Poker Game

  • Min-Gyu Kim
  • Kenji Suzuki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7072)

Abstract

This paper presents the analysis of human nonverbal responses and betting decision in terms of bluffing and the comparison between human-human poker game and human-robot poker game. According to a given situation manipulated with the card hand strength, we explored how different the participants change bluff decision between strong hand and weak hand and how different the participants use a bluff between a human-human and human-robot poker game. Furthermore, we analyzed the significant correlation between the card hand strength and human behaviors and obtained the regression model to predict the card hand strength from nonverbal behaviors and bluff decision.

Keywords

Human-robot social interaction Humanoid playmate Poker game Bluff analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wainer, J., Feil-Seifer, D.J., Shell, D.A., Mataric, M.J.: The Role of Physical Embodiment in Human-Robot Interaction. The 15th IEEE Int. Symp. on Robot and Human Interactive Communication, 117–122 (2006)Google Scholar
  2. 2.
    Lee, K.M., Jung, Y., Kim, J., Kim, S.R.: Are Physically Embodied Social Agents Better than Disembodied Social Agents?: The Effects of Physical Embodiment, Tactile Interaction, and People’s Loneliness in Human-Robot Interaction. Int. J. Human-Computer Studies 64(10), 962–973 (2006)CrossRefGoogle Scholar
  3. 3.
    Bainbridge, W.A., Hart, J.W., Kim, E.S., Scassellati, B.: The Effect of Presence on Human-Robot Interaction. In: 17th IEEE Int. Sym. on Robot and Human Interactive Communication, ROMAN 2008 (2008)Google Scholar
  4. 4.
    Kanda, T., Ishiguro, H., Imai, M., Ono, T.: Body Movement Analysis of Human-Robot Interaction. Int. Joint Conf. on Artificial Intelligence 18, 177–182 (2003)Google Scholar
  5. 5.
    Baumeister, R.F.: A Self-presentational View of Social Phenomena. Psychological Bulletin 91(1), 3–26 (1982)CrossRefGoogle Scholar
  6. 6.
    Schlenker, B.R., Pontari, B.A.: The Strategic Control of Information: Impression Management and Self-presentation in Daily Life. In: Tesser, A., Felson, R.B., Suls, J.M. (eds.) Psychological Perspectives on Self and Identity, pp. 199–232 (2000)Google Scholar
  7. 7.
    Kim, M.G., Suzuki, K.: A Card Playing Humanoid for Understanding Socio-emotional Interaction. In: Yang, H.S., Malaka, R., Hoshino, J., Han, J.H. (eds.) ICEC 2010. LNCS, vol. 6243, pp. 9–19. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Kelley, J.F.: An Iterative Design Methodology for User-Friendly Natural Language Office Information Applications. ACM Trans. on Office Information Systems 2(1), 26–41 (1984)CrossRefGoogle Scholar
  9. 9.
    Hayano, D.M.: Communicative Competency among Poker Players. J. of Communication 30(2), 99–104 (1980)CrossRefGoogle Scholar
  10. 10.
    Ambadar, Z., Schooler, J.W., Cohn, J.F.: Deciphering the Enigmatic Face: the Importance of Facial Dynamics in Interpreting Subtle Facial Expressions. Psychol. Sci. 16(5), 403–410 (2005)CrossRefGoogle Scholar
  11. 11.
    Valstar, M.F., Pantic, M., Ambadar, Z., Cohn, J.F.: Spontaneous vs. Posed Facial Behavior: Automatic Analysis of Brow Actions. In: 8th Int. Conf. on Multimodal Interfaces, pp. 162–170 (2006)Google Scholar
  12. 12.
    Vrij, A., Edward, K., Roberts, K.P., Bull, R.: Detecting Deceit via Analysis of Verbal and Nonverbal Behavior. J. of Nonverbal Behavior 24(4), 239–263 (2004)CrossRefGoogle Scholar
  13. 13.
    Fukuda, K.: Eye Blinks: New Indices for the Detection of Deception. Int. J. of Psychophysiology 40(3), 239–245 (2001)CrossRefMathSciNetGoogle Scholar
  14. 14.
    DePaulo, B.M., Lindsay, J.J., Malone, B.E., Muhlenbruck, L., Carlton, K., Cooper, H.: Cues to Deception. Psychological bulletin 129(1), 74–118 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Min-Gyu Kim
    • 1
  • Kenji Suzuki
    • 1
    • 2
  1. 1.Dept. of Intelligent Interaction TechnologiesUniversity of TsukubaTsukubaJapan
  2. 2.PRESTOJapan Science and Technology AgencyJapan

Personalised recommendations