Attitude towards Robots Depends on Interaction But Not on Anticipatory Behaviour

  • Raymond H. Cuijpers
  • Maarten T. Bruna
  • Jaap R. C. Ham
  • Elena Torta
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7072)


The care robot of the future should be able to navigate in domestic environments and perform meaningful tasks. Presumably, a robot that moves and interacts more intelligently gains more trust, is liked more and appears more humanlike. Here we test in three scenarios of differing urgency whether anticipatory walking behaviour of a robot is appreciated as more intelligent and whether this results in a more positive attitude towards the robot. We find no effect of walking behaviour and a main effect of urgency of the scenarios on perceived intelligence and on appropriateness. We interpret these results as that the type of interaction determines perceived intelligence and the attitude towards robots, but the degree of anticipation has no significant effect.


cognitive robotics social robotics navigation learning anticipation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Althaus, P., Ishiguro, H., Kanda, T., Miyashita, T., Christensen, H.I.: Navigation for Human-Robot Interaction Tasks. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1894–1900 (2004)Google Scholar
  2. 2.
    Bartneck, C., Kulić, D., Croft, E., Zoghbi, S.: Measurement Instruments for the Anthropomorphism, Animacy, Likeability, Perceived Intelligence, and Perceived Safety of Robots. International Journal of Social Robotics 1(1), 71–81 (2009), doi:10.1007/s12369-008-0001-3CrossRefGoogle Scholar
  3. 3.
    Bartneck, C., Kanda, T., Mubin, O., Al Mahmud, A.: Does the Design of a Robot Influence Its Animacy and Perceived Intelligence? International Journal of Social Robotics 1(2), 195–204 (2009)CrossRefGoogle Scholar
  4. 4.
    Bennewitz, M., Cielniak, C., Burgard, W., Thrun, S.: Learning Motion Patterns of People for Compliant Robot Motion. The International Journal of Robotics Research 24(1), 31–48 (2005)CrossRefGoogle Scholar
  5. 5.
    Breazeal, C.: Toward sociable robots. Robotics and Autonomous Systems 42(3-4), 167–175 (2003), doi:16/S0921-8890(02)00373-1Google Scholar
  6. 6.
    Cuijpers, R.H., Schie, H.T., van Koppen, M., Erlhagen, W., Bekkering, H.: Goals and means in action observation: A computational approach. Neural Networks 19(3), 311–322 (2006)CrossRefzbMATHGoogle Scholar
  7. 7.
    Dautenhahn, K., Walters, M.L., Woods, S., Koay, K.L., Nehaniv, C.L., Sisbot, A., Alami, R., Siméon, T.: How May I Serve You?: A Robot Companion Approaching a Seated Person in a Helping Context. In: Proceedings of the 1st ACM SIGCHI/SIGART Conference on Human-robot Interaction, pp. 172–179 (2006)Google Scholar
  8. 8.
    Dautenhahn, K.: Socially intelligent robots: dimensions of human–robot interaction. Philosophical Transactions of the Royal Society B: Biological Sciences 362(1480), 679–704 (2007), doi:10.1098/rstb.2006.2004CrossRefGoogle Scholar
  9. 9.
    Foka, A.F., Trahanias, P.E.: Probabilistic Autonomous Robot Navigation in Dynamic Environments with Human Motion Prediction. International Journal of Social Robotics 2, 79–94 (2010)CrossRefGoogle Scholar
  10. 10.
    Fong, T., Nourbakhsh, I., Dautenhahn, K.: A survey of socially interactive robots. Robotics and Autonomous Systems 42(3-4), 143–166 (2003), doi:16/S0921-8890(02)00372-XGoogle Scholar
  11. 11.
    Yamaoka, F., Kanda, T., Ishiguro, H., Hagita, N.: A Model of Proximity Control for Information-Presenting Robots. In: Proceedings of the 5st ACM SIGCHI/SIGART Conference on Human-robot Interaction - HRI 2010, vol. 26(1), pp. 187–195 (2010)Google Scholar
  12. 12.
    Green, S.A., Billinghurst, M., Chen, X., Chase, G.J.: Human-Robot Collaboration: A Literature Review and Augmented Reality Approach in Design. International Journal of Advanced Robotic Systems 5(1), 1–18 (2008)Google Scholar
  13. 13.
    Green, S.A., Chase, J.G., Chen, X., Billinghurst, M.: An Augmented Reality Human-Robot Collaboration System. In: Chen, X.Q., Chen, Y.Q., Chase, J.G. (eds.) Mobile Robots - State of the Art in Land, Sea, Air, and Collaborative Missions (2009) ISBN: 978-953-307-001-8 (in Tech.) Google Scholar
  14. 14.
    Kanda, T., Glas, D.F., Shiomi, M., Hagita, N.: Abstracting People’s Trajectories for Social Robots to Proactively Approach Customers. IEEE Transactions on Robotics 24, 1382–1396 (2009)CrossRefGoogle Scholar
  15. 15.
    Kasteren, T., van Noulas, A.K., Englebienne, G., Kröse, B.J.A.: Accurate Activity Recognition in a Home Setting. In: Proceedings of the 10th International Conference on Ubiquitous Computing, pp. 1–9 (2008)Google Scholar
  16. 16.
    Nguyen, N.T., Phung, D.Q., Venkatesh, S., Bui, H.: Learning and Detecting Activities from Movement Trajectories Using the Hierarchical Hidden Markov Model. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 2, pp. 955–960 (2005)Google Scholar
  17. 17.
    Pacchierotti, E., Christensen, H.I., Jensfelt, P.: Human-robot embodied interaction in hallway settings: a pilot user study. In: IEEE International Workshop on Robot and Human Interactive Communication, ROMAN 2005, pp. 164–171 (2005), doi:10.1109/ROMAN.2005.1513774Google Scholar
  18. 18.
    Torta, E., Cuijpers, R.H., Juola, J.F.: A model of the user’s proximity for Bayesian inference. In: Proceedings of the 6th International Conference on Human-robot Interaction - HRI 2011, p. 273 (2011), doi:10.1145/1957656.1957767Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Raymond H. Cuijpers
    • 1
  • Maarten T. Bruna
    • 1
  • Jaap R. C. Ham
    • 1
  • Elena Torta
    • 1
  1. 1.Eindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations