Advertisement

Potential Link Suggestion in Scientific Collaboration Networks

  • Cristian K. dos Santos
  • Maurcio Onoda
  • Victor S. Bursztyn
  • Valeria M. Bastos
  • Marcello P. A. Fonseca
  • Alexandre G. Evsukoff
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 116)

Abstract

This works presents a methodology to suggest potential relationships among the elements in the scientific collaboration network. The proposed approach takes into account not only the structure of the relationships among the individuals that constitute the network, but also the content of the information flow propagated in it, modeled from the documents authored by those individuals. The methodology is applied it the accepted papers for the 2 nd Workshop on Complex Networks - Complenet’2010. The results show insights on the relationships, both existent and potential, among elements in the network.

Keywords

Spectral Cluster Community Detection Modularity Function Collaboration Network Document Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chang, J., Blei, D.M.: Relational topic models for document networks. In: AISTATS 2009, Clearwater Beach, Florida, USA (2009)Google Scholar
  2. 2.
    Chang, J., Boyd-Graber, J., et al.: Connections between the lines: augmenting social networks with text. In: KDD 2009, Paris, France (2009)Google Scholar
  3. 3.
    dos Santos, C.K., Evsukoff, A.G., de Lima, B.S.L.P.: Cluster analysis in document networks. WIT Transactions on Information and Communication Technologies 40, 95–104 (2008)CrossRefGoogle Scholar
  4. 4.
    dos Santos, C.K., Evsukoff, A.G., de Lima, B.S.L.P.: Spectral clustering and community detection in document networks. WIT Transactions on Information and Communication Technologies 42, 41–50 (2009)CrossRefGoogle Scholar
  5. 5.
    Fortunato, S., Barthélemy, M.: Resolution limit in community detection. Proceedings of the National Academy of Sciences 104(1), 36–41 (2007)CrossRefGoogle Scholar
  6. 6.
    Liben-Nowell, D., Kleinberg, J.: The link prediction problem for social networks. In: CIKM 2003. ACM, New Orleans (2003)Google Scholar
  7. 7.
    Newman, M.E.J.: Scientific collaboration networks: I. Network construction and fundamental results. Phys. Rev. E 64, 016131 (2001)CrossRefGoogle Scholar
  8. 8.
    Newman, M.E.J.: The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. USA 98, 404–409 (2001a)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Newman, M.E.J.: Modularity and community structure in networks. PNAS 103(23), 8577–8582 (2006)CrossRefGoogle Scholar
  10. 10.
    Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Physical Review E 69(2), 26113–26115 (2004)CrossRefGoogle Scholar
  11. 11.
    Ruan, J., Zhang, W.: Identifying network communities with a high resolution. Physical Review E 77(1), 16104–16112 (2008)CrossRefGoogle Scholar
  12. 12.
    Wang, G., Shen, Y., et al.: A vector partitioning approach to detecting community structure in complex networks. Comput. Math. Appl. 55(12), 2746–2752 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    White, S., Smyth, P.: A spectral clustering approach to finding communities in graphs. In: SIAM International Conference on Data Mining, pp. 76–84 (2005)Google Scholar
  14. 14.
    Xiang, T., Gong, S.: Spectral clustering with eigenvector selection. Pattern Recognition 41(3), 1012–1029 (2008)CrossRefzbMATHGoogle Scholar
  15. 15.
    Zarei, M., Samani, K.A.: Eigenvectors of network complement reveal community structure more accurately. Physica A 388(8), 1721–1730 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Cristian K. dos Santos
    • 1
  • Maurcio Onoda
    • 1
  • Victor S. Bursztyn
    • 1
  • Valeria M. Bastos
    • 1
  • Marcello P. A. Fonseca
    • 1
  • Alexandre G. Evsukoff
    • 1
  1. 1.Federal University of Rio de Janeiro COPPE/UFRJBrazil

Personalised recommendations