Fully Generalized Graph Cores

  • Alexandre P. Francisco
  • Arlindo L. Oliveira
Part of the Communications in Computer and Information Science book series (CCIS, volume 116)


A core in a graph is usually taken as a set of highly connected vertices. Although general, this definition is intuitive and useful for studying the structure of many real networks. Nevertheless, depending on the problem, different formulations of graph core may be required, leading us to the known concept of generalized core. In this paper we study and further extend the notion of generalized core. Given a graph, we propose a definition of graph core based on a subset of its subgraphs and on a subgraph property function. Our approach generalizes several notions of graph core proposed independently in the literature, introducing a general and theoretical sound framework for the study of fully generalized graph cores. Moreover, we discuss emerging applications of graph cores, such as improved graph clustering methods and complex network motif detection.


Generalize Core Weighted Graph Property Function Maximal Clique Network Motif 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Seidman, S.B.: Network structure and minimum degree. Social Networks 5(3), 269–287 (1983)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Wasserman, S., Faust, K.: Social network analysis: Methods and applications. Cambridge University Press, Cambridge (1994)CrossRefzbMATHGoogle Scholar
  3. 3.
    Batagelj, V., Zaveršnik, M.: Generalized cores. arXiv:cs/0202039 (2002)Google Scholar
  4. 4.
    Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in large networks: Natural cluster sizes and the absence of large well-define clusters. arXiv:0810.1355 (2008)Google Scholar
  5. 5.
    Wei, F., Qian, W., Wang, C., Zhou, A.: Detecting Overlapping Community Structures in Networks. World Wide Web 12(2), 235–261 (2009)CrossRefGoogle Scholar
  6. 6.
    Schloegel, K., Karypis, G., Kumar, V.: Graph partitioning for high-performance scientific simulations. Morgan Kaufmann Publishers, Inc., San Francisco (2003)zbMATHGoogle Scholar
  7. 7.
    Abou-Rjeili, A., Karypis, G.: Multilevel algorithms for partitioning power-law graphs. In: IEEE International Parallel & Distributed Processing Symposium, p. 10. IEEE, Los Alamitos (2006)Google Scholar
  8. 8.
    Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435, 814–818 (2005)CrossRefGoogle Scholar
  9. 9.
    Farkas, I., Ábel, D., Palla, G., Vicsek, T.: Weighted network modules. New J. Physics 9(6), 180 (2007)CrossRefGoogle Scholar
  10. 10.
    Shen, H., Cheng, X., Cai, K., Hu, M.B.: Detect overlapping and hierarchical community structure in networks. Physica A: Statistical Mechanics and its Applications 388(8), 1706–1712 (2009)CrossRefGoogle Scholar
  11. 11.
    Saito, K., Yamada, T., Kazama, K.: Extracting Communities from Complex Networks by the k-dense Method. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences 91, 3304–3311 (2008)CrossRefGoogle Scholar
  12. 12.
    Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network Motifs: Simple Building Blocks of Ccomplex Networks. Science 298, 824–827 (2002)CrossRefGoogle Scholar
  13. 13.
    Saito, R., Suzuki, H., Hayashizaki, Y.: Construction of reliable protein-protein interaction networks with a new interaction generality measure. Bioinformatics 19(6), 756–763 (2002)CrossRefGoogle Scholar
  14. 14.
    Albert, I., Albert, R.: Conserved network motifs allow protein-protein interaction prediction. Bioinformatics 20(18), 3346–3352 (2004)CrossRefGoogle Scholar
  15. 15.
    Kashtan, N., Itzkovitz, S., Milo, R., Alon, U.: Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs. Bioinformatics 20(11), 1746–1758 (2004)CrossRefGoogle Scholar
  16. 16.
    Kuramochi, M., Karypis, G.: An efficient algorithm for discovering frequent subgraphs. IEEE Transactions on Knowledge and Data Engineering 16(9), 1038–1051 (2004)CrossRefGoogle Scholar
  17. 17.
    Milenković, T., Lai, J., Pržulj, N.: Graphcrunch: a tool for large network analyses. BMC Bioinformatics 9(1), 70 (2008)CrossRefGoogle Scholar
  18. 18.
    Jaccard, P.: Distribution de la flore alpine dans le Bassin des Dranses et dans quelques regions voisines. Bull. Soc. Vaud. Sci. Nat. 37, 241–272 (1901)Google Scholar
  19. 19.
    Tanimoto, T.T.: IBM Internal Report November 17th. Technical report, IBM (1957)Google Scholar
  20. 20.
    Xu, X., Yuruk, N., Feng, Z., Schweiger, T.A.J.: Scan: a structural clustering algorithm for networks. In: SIGKDD, pp. 824–833. ACM, New York (2007)Google Scholar
  21. 21.
    Whitney, H.: On the abstract properties of linear dependence. American Journal of Mathematics 57(3), 509–533 (1935)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Tutte, W.T.: Lectures on matroids. J. Res. Nat. Bur. Stand. B 69, 1–47 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the AMS 7(1), 48–50 (1956)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Borůvka, O.: On a minimal problem. Prace Moraské Pridovedecké Spolecnosti 3 (1926)Google Scholar
  25. 25.
    Spielman, D.A., Teng, S.H.: A local clustering algorithm for massive graphs and its application to nearly-linear time graph partitioning. (2008)Google Scholar
  26. 26.
    Andersen, R., Lang, K.J.: Communities from seed sets. In: WWW, pp. 223–232. ACM, New York (2006)Google Scholar
  27. 27.
    Chung, F.: The heat kernel as the pagerank of a graph. PNAS 104(50), 19735–19740 (2007)CrossRefGoogle Scholar
  28. 28.
    Lancichinetti, A., Fortunato, S., Kertész, J.: Detecting the overlapping and hierarchical community structure in complex networks. New J. Physics 11, 33015 (2009)CrossRefGoogle Scholar
  29. 29.
    Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 10008 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Alexandre P. Francisco
    • 1
  • Arlindo L. Oliveira
    • 1
  1. 1.INESC-ID / CSE DeptIST, Tech Univ of LisbonLisboaPortugal

Personalised recommendations