On Community Detection in Very Large Networks

  • Alexandre P. Francisco
  • Arlindo L. Oliveira
Part of the Communications in Computer and Information Science book series (CCIS, volume 116)


Community detection or graph clustering is an important problem in the analysis of computer networks, social networks, biological networks and many other natural and artificial networks. These networks are in general very large and, thus, finding hidden structures and functional modules is a very hard task. In this paper we propose new data structures and a new implementation of a well known agglomerative greedy algorithm to find community structure in large networks, the CNM algorithm. The experimental results show that the improved data structures speedup the method by a large factor, for large networks, making it competitive with other state of the art algorithms.


Random Graph Large Network Community Detection Bottlenose Dolphin Maximum Modularity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fortunato, S.: Community detection in graphs. Physics Reports 486, 75–174 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Brandes, U., et al.: On finding graph clusterings with maximum modularity. In: Brandstädt, A., Kratsch, D., Müller, H. (eds.) WG 2007. LNCS, vol. 4769, pp. 121–132. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Newman, M.E.J.: Fast algorithm for detecting community structure in networks. Physical Review E 69, 066133 (2004)CrossRefGoogle Scholar
  4. 4.
    Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Physical Review E 70, 066111 (2004)CrossRefGoogle Scholar
  5. 5.
    Chung, F., Lu, L., Dewey, T.G., Galas, D.J.: Duplication models for biological networks. Journal of Computational Biology 10(5), 677–687 (2003)CrossRefGoogle Scholar
  6. 6.
    Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Physical Review E 69, 026113 (2004)CrossRefGoogle Scholar
  7. 7.
    Guimerà, R., Sales-Pardo, M., Amaral, L.A.N.: Modularity from fluctuations in random graphs and complex networks. Physical Review E 70(2), 025101 (2004)CrossRefGoogle Scholar
  8. 8.
    Agarwal, G., Kempe, D.: Modularity-maximizing communities via mathematical programming. The European Physical Journal B 66(3), 409–418 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bhan, A., Galas, D.J., Dewey, T.G.: A duplication growth model of gene expression networks. Bioinformatics 18(11), 1486–1493 (2002)CrossRefGoogle Scholar
  10. 10.
    Zachary, W.W.: An information flow model for conflict and fission in small groups. Journal of Anthropological Research 33, 452–473 (1977)CrossRefGoogle Scholar
  11. 11.
    Lusseau, D., et al.: The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations. Behavioral Ecology and Sociobiology 54(4), 396–405 (2003)CrossRefGoogle Scholar
  12. 12.
    Duch, J., Arenas, A.: Community identification using extremal optimization. Physical Review E 72, 027104 (2005)CrossRefGoogle Scholar
  13. 13.
    Jeong, H., Mason, S., Barabási, A.L., Oltvai, Z.N.: Centrality and lethality of protein networks. Nature 411(6833), 41–42 (2001)CrossRefGoogle Scholar
  14. 14.
    Schuetz, P., Caflisch, A.: Efficient modularity optimization by multistep greedy algorithm and vertex mover refinement. Physical Review E 77(4), 46112 (2008)CrossRefGoogle Scholar
  15. 15.
    Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of Statistical Mechanics P10008 (2008)Google Scholar
  16. 16.
    Noack, A., Rotta, R.: Multi-level algorithms for modularity clustering. In: Experimental Algorithms. LNCS, vol. 5526, pp. 257–268. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Wakita, K., Tsurumi, T.: Finding community structure in mega-scale social networks. In: International World Wide Web Conference, pp. 1275–1276. ACM, New York (2007)Google Scholar
  18. 18.
    Reichardt, J., Bornholdt, S.: Statistical mechanics of community detection. Physical Review E 74, 016110 (2006)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Danon, L., Duch, J., Diaz-Guilera, A., Arenas, A.: The effect of size heterogeneity on community identification in complex networks. Journal of Statistical Mechanics P11010 (2006)Google Scholar
  20. 20.
    Fortunato, S., Barthélemy, M.: Resolution limit in community detection. PNAS 104(1), 36–41 (2007)CrossRefGoogle Scholar
  21. 21.
    Kumpula, J.M., Saramäki, J., Kaski, K., Kertész, J.: Limited resolution in complex network community detection with Potts model approach. The European Physical Journal B - Condensed Matter and Complex Systems 56(1), 41–45 (2007)CrossRefGoogle Scholar
  22. 22.
    Feng, Z., Xu, X., Yuruk, N., Schweiger, T.A.J.: A novel similarity-based modularity function for graph partitioning. In: Song, I.-Y., Eder, J., Nguyen, T.M. (eds.) DaWaK 2007. LNCS, vol. 4654, pp. 385–396. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Rosvall, M., Bergstrom, C.T.: An information-theoretic framework for resolving community structure in complex networks. PNAS 104(18), 7327 (2007)CrossRefGoogle Scholar
  24. 24.
    Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal community structure. PNAS 105(4), 111–118 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Alexandre P. Francisco
    • 1
  • Arlindo L. Oliveira
    • 1
  1. 1.INESC-ID / CSE DeptIST, Tech Univ of LisbonLisboaPortugal

Personalised recommendations