Skip to main content

Fast Community Detection for Dynamic Complex Networks

  • Conference paper
Book cover Complex Networks

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 116))

Abstract

Dynamic complex networks are used to model the evolving relationships between entities in widely varying fields of research such as epidemiology, ecology, sociology, and economics. In the study of complex networks, a network is said to have community structure if it divides naturally into groups of vertices with dense connections within groups and sparser connections between groups. Detecting the evolution of communities within dynamically changing networks is crucial to understanding complex systems. In this paper, we develop a fast community detection algorithm for real-time dynamic network data. Our method takes advantage of community information from previous time steps and thereby improves efficiency while maintaining the quality of community detection. Our experiments on citation-based networks show that the execution time improves as much as 30% (average 13%) over static methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Voevodski, K., Teng, S.H., Xia, Y.: Finding local communities in protein networks. BMC Bioinformatics 10(10), 297 (2009)

    Article  Google Scholar 

  2. Vazquez, A., Dobrin, R., Sergi, D., Eckmann, J.P., Oltvai, Z.N., Barabási, A.L.: The topological relationship between the large-scale attributes and local interaction patterns of complex networks. PNAS 101, 17940–17945 (2004)

    Article  Google Scholar 

  3. Watts, D., Strogatz, S.: Collective dynamics of small world networks. Nature 393(6684) (441), 42–440 (1998)

    Article  Google Scholar 

  4. Albert, R., Jeong, H., Barabasi, A.L.: Diameter of the world-wide web. Nature 401, 130–131 (1999)

    Article  Google Scholar 

  5. Newman, M., Park, J.: Why social networks are different from other types of networks. Phys. Rev. E 68(036122), 36122 (2003)

    Article  Google Scholar 

  6. Newman, M.: Assortative mixing in networks. Phys. Rev. Lett. 89, 208701 (2002)

    Article  Google Scholar 

  7. Boguna, M., Pastor-Satorras, R., Vespignani: Epidemic spreading in complex networks with degree correlations. In: Statistical Mechanics of Complex Networks. Lecture Notes in Physics, vol. 625, pp. 127–147 (2003)

    Google Scholar 

  8. Albert, R., Barabasi, A.L.: Statistical mechanics of complex networks. Reviews of Modern Physics 74, 47–97 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Porter, M., Mucha, P.J., Newman, M.E.J., Friend, A.J.: Community structure in the united states house of representatives. Physica A 386, 414–438 (2007)

    Article  Google Scholar 

  10. Barabasi, A.L., Jeong, H., Ravasz, E., Neda, Z., Schuberts, A., Vicsek, T.: Evolution of the social network of scientific collaborations. Physica A 311, 590–614 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Atkins, K., Chen, J., Anil Kumar, V.S., Marathe, A.: Structure of electrical networks: A graph theory based analysis. International Journal of Critical Infrastructures 5, 265–284 (2009)

    Article  Google Scholar 

  12. Girvan, M., Newman, M.: Community structure in social and biological networks. PNAS 99, 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Newman, M.: Detecting community structure in networks. Eur. Phys. J. B 38, 321–330 (2004)

    Article  Google Scholar 

  14. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004)

    Article  Google Scholar 

  15. Fortunato, S., Barthlemy, M.: Resolution limit in community detection. PNAS 104(1), 36–41 (2007)

    Article  Google Scholar 

  16. Good, B.H., de Montjoye, Y., Clauset, A.: The performance of modularity maximization in practical contexts. Phys. 82, 046106 (2010)

    MathSciNet  Google Scholar 

  17. Steinhaeuser, K., Chawla, N.V.: Identifying and evaluating community structure in complex networks. Pattern Recognition Letters 31(5), 413–421 (2010)

    Article  Google Scholar 

  18. Gaertler, M.: Clustering. Network Anal., 178–215 (2005)

    Google Scholar 

  19. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70(6), 66111 (2004)

    Article  Google Scholar 

  20. Wakita, K., Tsurumi, T.: Finding community structure in mega-scale social networks. In: Proceedings of the 16th International Conference on World Wide Web, pp. 1275–1276. ACM, New York (2007)

    Chapter  Google Scholar 

  21. Tantipathananandh, C., Berger-Wolf, T., Kempe, D.: A framework for community identification in dynamic social networks. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 717–726 (2007)

    Google Scholar 

  22. Ning, H., Xu, W., Chi, Y., Gong, Y., Huang, T.: Incremental spectral clustering with application to monitoring of evolving blog communities. In: SIAM Int. Conf. on Data Mining, pp. 261–272 (2007)

    Google Scholar 

  23. Leung, I.X.Y., Hui, P., Liò, P., Crowcroft, J.: Towards real-time community detection in large networks. Phys. Rev. E 79, 066107 (2009)

    Article  Google Scholar 

  24. Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect community structures in large-scale networks. Phys. Rev. E 76, 036106 (2007)

    Article  Google Scholar 

  25. Mucha, P.J., Richardson, T., Macon, K., Porter, M.A., Onnela, J.-P.: Community structure in time-dependent, multiscale, and multiplex networks. Science 328, 876–878 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Bader, D.A., Amos-Binks, A., Chavarrsa-Miranda, D., Hastings, C., Madduri, K., Poulos, S.C.: STINGER: Spatio-Temporal Interaction Networks and Graphs (STING) Extensible Representation, Tech. rep., Georgia Institute of Technology (2009)

    Google Scholar 

  27. Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS Publishing Company (1995)

    Google Scholar 

  28. The DBLP Computer Science Bibliography, http://dblpVis.uni-trier.de

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bansal, S., Bhowmick, S., Paymal, P. (2011). Fast Community Detection for Dynamic Complex Networks. In: da F. Costa, L., Evsukoff, A., Mangioni, G., Menezes, R. (eds) Complex Networks. Communications in Computer and Information Science, vol 116. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25501-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25501-4_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25500-7

  • Online ISBN: 978-3-642-25501-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics