Traffic Congestion on Clustered Random Complex Networks

  • Thiago Henrique Cupertino
  • Liang Zhao
Part of the Communications in Computer and Information Science book series (CCIS, volume 116)


In this work we study the traffic-flow on clustered random complex networks. First, we derive a mathematical model to determine the congestion phase-transition point. This point is defined as the abrupt transition from a free-flow to a congested state. Second, we study the influences of different cluster sizes on the traffic-flow. Our results suggest that the traffic of centralized cluster network (a network which has a big central cluster surrounded by clusters with significantly smaller sizes) is less congesting than balanced cluster network (a network with clusters of approximately the same size). These results may have practical importance in urbanization planning. For example, using the results of this study, the increasing of satellite cities’ sizes surrounding a big city should be well controlled to avoid heavy traffic congestion.


Complex Network Cluster Size Network Size Congested State Connection Probability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barabási, A.-L., Albert, R.: Science 286, 509 (1999)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Albert, R., Barabási, A.-L.: Rev. Mod. Phys. 74, 47 (2002)CrossRefGoogle Scholar
  3. 3.
    Newman, M.E.J.: SIAM 45, 167 (2004)CrossRefGoogle Scholar
  4. 4.
    Strogatz, S.H.: Nature 410, 268 (2001)CrossRefGoogle Scholar
  5. 5.
    Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of Networks: From Biological Nets to the Internet and WWW. Oxford University Press, Oxford (2003)CrossRefzbMATHGoogle Scholar
  6. 6.
    Guimerà, R., Díaz-Guilera, A., Vega-Redondo, F., Cabrales, A., Arenas, A.: Phys Rev. Lett. 89, 248701 (2002)CrossRefGoogle Scholar
  7. 7.
    Woolf, M., Arrowsmith, D.K., Mondragón, R.J., Pitts, J.M.: Phys. Rev. E 66, 046106 (2002)CrossRefGoogle Scholar
  8. 8.
    Valverde, S., Solé, R.V.: Physica A 312, 636 (2002)CrossRefGoogle Scholar
  9. 9.
    Zhao, L., Lai, Y.-C., Park, K., Ye, N.: Phys. Rev. E 71, 026125 (2005)CrossRefGoogle Scholar
  10. 10.
    Zhao, L., Cupertino, T.H., Park, K., Lai, Y.-C., Jin, X.: Chaos 17, 043103 (2007)CrossRefGoogle Scholar
  11. 11.
    Danila, G., Sun, Y., Bassler, K.E.: Phys. Rev. E 80, 066116 (2009)CrossRefGoogle Scholar
  12. 12.
    Yang, R., Wang, W.-X., Lai, Y.-C., Chen, G.: Phys. Rev. E 79, 026112 (2009)CrossRefGoogle Scholar
  13. 13.
    Danon, L., Arenas, A., Díaz-Guilera, A.: Phys. Rev. E 77, 036103 (2008)CrossRefGoogle Scholar
  14. 14.
    Girvan, M., Newman, E.J.: Proc. Natl. Acad. Sci. 99, 7821 (2002)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Porter, M.A., Onnela, J.-P., Mucha, P.J.: Notices of the American Mathematical Society 56, 1082 (2009)MathSciNetGoogle Scholar
  16. 16.
    Fortunato, S.: Physics Reports 486, 75 (2010)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Iñiguez, G., Kertész, J., Kaski, K.K., Barrio, R.A.: Phys. Rev. E 80, 066119 (2009)CrossRefGoogle Scholar
  18. 18.
    Borgnat, P., Fleury, E., Guillaume, J.-L., Robardet, C., Scherrer, A.: Proceedings of NATO ASI ’Mining Massive Data Sets for Security’. In: Fogelman-Soulié, F., Perrotta, D., Piskorski, J., Steinberg, R. (eds.) NATO Science for Peace and Security Series D: Information and Communication Security, vol. 42, p. 198. IOS Press, Amsterdam (2008)Google Scholar
  19. 19.
    Newman, M.E.J.: Phys. Rev. E 64, 016132 (2001)CrossRefGoogle Scholar
  20. 20.
    Arenas, A., Díaz-Guilera, A., Guimerà, R.: Phys Rev. Lett. 86, 3196 (2001)CrossRefGoogle Scholar
  21. 21.
    Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Phys. Rev. E 64, 026118 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Thiago Henrique Cupertino
    • 1
  • Liang Zhao
    • 1
  1. 1.Institute of Mathematical Sciences and ComputingSão CarlosBrazil

Personalised recommendations