Skip to main content

Preliminary Slope Mass Movement Susceptibility Mapping Using DEM and LiDAR DEM

  • Chapter
  • First Online:
Terrigenous Mass Movements

Abstract

Hazard mapping in mountainous areas at the regional scale has greatly changed since the 1990s thanks to improved digital elevation models (DEM). It is now possible to model slope mass movement and floods with a high level of detail in order to improve geomorphologic mapping. We present examples of regional multi-hazard susceptibility mapping through two Swiss case studies, including landslides, rockfall, debris flows, snow avalanches and floods, in addition to several original methods and software tools. The aim of these recent developments is to take advantage of the availability of high resolution DEM (HRDEM) for better mass movement modeling. Our results indicate a good correspondence between inventories of hazardous zones based on historical events and model predictions. This paper demonstrates that by adapting tools and methods issued from modern technologies, it is possible to obtain reliable documents for land planning purposes over large areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adjel G (1996) Méthodes statistiques pour la détermination de la distance d’arrêt des avalanches. Ph.D. thesis, Université Joseph-Fourier, Grenoble, France

    Google Scholar 

  • Agliardi F, Crosta GB (2003) High resolution three-dimensional numerical modeling of rockfalls. Int J Rock Mech Min Sci 40:455–471

    Article  Google Scholar 

  • Aksoy H, Ercanoglu M (2006) Determination of the rockfall source in an urban settlement area by using a rule-based fuzzy evaluation. Nat Hazards Earth Syst Sci 6:941–954

    Article  Google Scholar 

  • Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Environ 58:21–44

    Article  Google Scholar 

  • Ancey C, Bain V, Bardou E, Borrel G, Burnet R, Jarry F, Kölbl O, Meunier M (2006) Dynamique des avalanches. Presses polytechniques et universitaires romandes (Lausanne, Suisse) and Cemagref (Antony, France), p 338

    Google Scholar 

  • Ardizzone F, Cardinali M, Galli F, Guzzetti F, Reichenbach P (2007) Identification and mapping of recent rainfall-induced landslides using elevation data collected by airborne lidar. Nat Hazards Earth Syst Sci 7:637–650

    Article  Google Scholar 

  • Bai B, Wang J, Pozdnoukhov A, Kanevski MF (2009) Validation of logistic regression models for landslide susceptibility maps, IEEE computer society. In: Proceedings of the 2009 WRI world congress on computer science and information engineering, vol 2. Washington, DC, pp 355–358

    Google Scholar 

  • Baillifard F, Jaboyedoff M, Sartori M (2003) Rockfall hazard mapping along a mountainous road in Switzerland using a GIS-based parameter rating approach. Nat Hazards Earth Syst Sci 3:435–442

    Article  Google Scholar 

  • Baillifard F, Jaboyedoff M, Rouiller JD, Couture R, Locat J, Locat P, Robichaud G, Hamel G (2004) Towards a GIS-based hazard assessment along the Quebec city Promontory, Quebec, Canada. In: Lacerda WA, Ehrlich M, Fontoura AB, Sayao A (eds) Landslides evaluation and stabilization. Balkema, Rotterdam, pp 207–213

    Google Scholar 

  • Baum RL, Savage WZ, Godt JW (2002) TRIGRS—a fortran program for transient rainfall infiltration and grid-based regional slope stability. Open-file report 02-424, U.S. geological survey, p 61

    Google Scholar 

  • Beven KJ, Kirkby MJ (1979) A physically based variable contributing area model of basin hydrology. Hydrol Sci Bull 24:43–69

    Article  Google Scholar 

  • Beven KJ, Lamb R, Quinn P, Romanowicz R, Freer J (1995) Topmodel. In: Singh VP (ed) Computer models of watershed hydrology. Water Resource Publications, Highlands Ranch, pp 627–668

    Google Scholar 

  • Blahut J, Horton P, Sterlacchini S, Jaboyedoff M (2010) Debris flow hazard modeling on medium scale: Valtellina di Tirano, Italy. Nat Hazards Earth Syst Sci 10:2379–2390

    Article  Google Scholar 

  • Burrough P, McDonnell RA (1998) Principles of geographical information systems. Oxford University Press, Oxford, p 330

    Google Scholar 

  • Carrara A, Guzetti F (1995) Geographical information systems in assessing natural hazards. Kluwer Academic Publisher, Dordrecht, p 353

    Google Scholar 

  • Carrara A, Catalano E, Sorriso-Valvo M, Reali C, Osso I (1978) Digital terrain analysis for land evaluation. Geologia Applicata e Idrogeologia 13:69–127

    Google Scholar 

  • Carrara A, Cardinali M, Detti R, Guzzetti F, Pasqui V, Reichenbach P (1991) GIS techniques and statistical models in evaluating landslide hazard. Earth Surf Proc Land 16:427–445

    Article  Google Scholar 

  • Cascini L (2008) Applicability of landslide susceptibility and hazard zoning at different scales. Eng Geol 102:164–177

    Article  Google Scholar 

  • Chacón J, Irigaray C, Fernández T, El Hamdouni R (2006) Engineering geology maps: landslides and geographical information systems. Bull Eng Geol Environ 65:341–411

    Article  Google Scholar 

  • Chigira M, Duan F, Yagi H, Furuya T (2004) Using an airborne laser scanner for the identification of shallow landslides and susceptibility assessment in an area of ignimbrite overlain by permeable pyroclastics. Landslides 1:203–209

    Article  Google Scholar 

  • Chung CJ, Fabbri AG (2008) Predicting landslide for risk analysis–spatial models tested by cross-validation technique. Geomorphology 94:438–452

    Article  Google Scholar 

  • Chung CJ, Fabbri AG, Van Westen CJ (1995) Multivariate regression analysis for landslide hazard zonation. In: Geographical information systems in assessing natural hazards. In: Carrara A, Guzetti F (ed) Kluwer Academic Publisher, Dordrecht, pp 107–133

    Google Scholar 

  • Claessens L, Heuvelink GBM, Schoorl JM, Veldkamp A (2005) DEM resolution effects on shallow landslide hazard and soil redistribution modelling. Earth Surf Proc Land 30:461–477

    Article  Google Scholar 

  • Consuegra D, Joerin F, Vitalini F (1995) Flood delineation and impact assessment in agricultural land using GIS technology. In: Carrara A, Guzetti F (eds) Geographical information systems in assessing natural hazards. Kluwer Academic Publisher, Dordrecht, pp 107–133

    Google Scholar 

  • Crosta GB, Agliardi F (2002) How to obtain alert velocity threshold for large rockslides. Phys Chem Earth 27:1557–1565

    Google Scholar 

  • Crosta GB, Agliardi F (2003) A methodology for physically based rockfall hazard assessment. Nat Hazards Earth Syst Sci 3:407–422

    Article  Google Scholar 

  • Crosta GB, Frattini P, Sterlacchini S (2001) Valutazione e gestione del rischio da frana. Regione Lambardia, Milano, p 169

    Google Scholar 

  • Cruden DM, Thomson S (1987) Exercises in terrain analysis. The Pica Pica Press, The University of Alberta Press, Edmonton, Alberta, p 185

    Google Scholar 

  • De Moel H, Van Alphen J, Aerts JCJH (2009) Flood maps in Europe–methods, availability and use. Nat Hazards Earth Syst Sci 9:289–301

    Article  Google Scholar 

  • Delmonaco G, Leoni G, Margottini C, Puglisi C, Spizzichino D (2003) Large scale debris-flow hazard assessment: a geotechnical approach and GIS modelling. Nat Hazards Earth Syst Sci 3:443–455

    Article  Google Scholar 

  • Desmet PJJ, Govers G (1996) Comparison of routing algorithms for digital elevation models and their implications for predicting ephemeral gullies. Geog Inf Syst 10:311–331

    Google Scholar 

  • Directive 2007/60/EC of the European parliament and of the council of the 23 Oct 2007 on the assessment and management of flood risks, p 8

    Google Scholar 

  • Domínguez-Cuesta M, Montserrat JS, Colubi A, González-Rodríguez G (2009) Modelling shallow landslide susceptibility: a new approach in logistic regression by using favourability assessment. Int J Earth Sci. doi: 10.1007/s00531-008-0414-0

  • Dorren LKA, Seijmonsbergen AC (2003) Comparison of three GIS-based models for predicting rockfall runout zones at a regional scale. Geomorphology 56:49–64

    Article  Google Scholar 

  • DUTI (1985) Détection et Utilisation des terrains instables—projet d’Ecole DUTI. Rapport final. Ecole Polytechnique Fédérale de Lausanne, Lausanne, Suisse, p 229

    Google Scholar 

  • Einstein HH (1988) Special lecture: landslide risk assessment procedure. In: Bonnard C (ed) Proceedings of the 5th international symposium on landslides, vol 2. Balkema, Lausanne, pp 1075–1090, 10–15 July 1988

    Google Scholar 

  • Endreny TA, Wood EF (2003) Maximizing spatial congruence of observed and DEM-delineated overland flow networks. Int J Geog Inf Sci 17:699–713

    Article  Google Scholar 

  • Ercanoglu M, Gokceoglu C (2002) Assessment of landslide susceptibility for a landslide-prone area (north Yenice, NW Turkey) by fuzzy approach. Env Geol 41:720–730

    Article  Google Scholar 

  • Ercanoglu M, Gokceoglu C (2004) Use of fuzzy relations to produce landslide susceptibility map of a landslide-prone area (west black sea region, Turkey). Eng Geol 75:229–250

    Article  Google Scholar 

  • Erskine R, Green T, Ramirez J, MacDonald L (2006) Comparison of grid-based algorithms for computing upslope contributing area. Water Res Res, p 42

    Google Scholar 

  • Evans S, Hungr O (1993) The assessment of rockfall hazard at the base of talus slopes. Can Geotech J 30:620–636

    Article  Google Scholar 

  • Fairfield J, Leymarie P (1991) Drainage networks from grid digital elevation models. Water Resour Res 27:709–717

    Article  Google Scholar 

  • Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ (2008a) Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning. Eng Geol 102:85–98

    Article  Google Scholar 

  • Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ (2008b) Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning—commentary. Eng Geol 102:99–111

    Article  Google Scholar 

  • Frattini P, Crosta G, Carrara A, Agliardi F (2008) Assessment of rockfall susceptibility by integrating statistical and physicallybased approaches. Geomorphology 94:419–437

    Article  Google Scholar 

  • Freeman TG (1991) Calculating catchment area with divergent flow based on a regular grid. Comput Geosci 17:413–422

    Article  Google Scholar 

  • Galli M, Ardizzone F, Cardinali M, Guzzetti F, Reichenbach P (2008) Comparing landslide inventory maps. Geomorphology 94:268–289

    Article  Google Scholar 

  • Gamma, P. (2000). dfwalk-Ein Murgang-Simulationsprogramm zur Gefahrenzonierung. Inaugural dissertation, Geographisches Institut der Universität Bern

    Google Scholar 

  • Gilard O, Gendreau N (1998) Inondabilité: une méthode de prevention raisonnable du risque d’inondation pour une gestion mieux intégrée des bassins versants. Revue des Sci de l’Eau 3:429–444

    Google Scholar 

  • Glenn NF, Streutker DR, Chadwick DJ, Thackray GD, Dorsch SJ (2006) Analysis of LIDAR-derived topographic information for characterizing and differentiating landslide morphology and activity. Geomorphology 73:131–148

    Article  Google Scholar 

  • Gokceoglu C, Sonmez H, Ercanoglu M (2000) Discontinuity controlled probabilistic slope failure risk maps of the Altindag (settlement) region in Turkey. Eng Geol 55:277–296

    Article  Google Scholar 

  • Gruber U, Bartelt P (2007) Snow avalanche hazard and modelling of large areas using shallow water numerical methods and GIS. Environ Model Softw 22:1472–1481

    Article  Google Scholar 

  • Günther A (2003) SLOPEMAP: programs for automated mapping of geometrical and kinematical properties of hard rock hill slopes. Comput Geosci 29:865–875

    Article  Google Scholar 

  • Günther A, Carstensen A, Pohl W (2004) Automated sliding susceptibility mapping of rock slopes. Nat Hazards Earth Syst Sci 4:95–102

    Article  Google Scholar 

  • Gupta RP, Saha AK, Arora MK, Kumar A (1999) Landslide hazard zonation in part of the Bhagirathi valley, Garhwal mimalyas, using integrated remote sensing–GIS. Himalayan Geol 20:71–85

    Google Scholar 

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, central Italy. Geomorphology 31:181–216

    Article  Google Scholar 

  • Guzzetti F, Cardinali M, Reichenbach P, Carrara A (2000) Comparing landslide maps: a case study in the upper Tiber River Basin, Central Italy. Environ Manage 25:247–363

    Article  Google Scholar 

  • Guzzetti F, Crosta G, Detti R, Agliardi F (2002) STONE: a computer program for the three-dimensional simulation of rock-falls. Comput Geosci 28:1079–1093

    Article  Google Scholar 

  • Guzzetti F, Reichenbach P, Wieczorek GF (2003) Rockfall hazard and risk assessment in the Yosemite Valley, California, USA. Nat Hazards Earth Syst Sci 3:491–503

    Article  Google Scholar 

  • Haugerud RA, Harding DJ, Johnson SY, Harless JL, Weaver CS (2003) High-resolution LIDAR topography of the Puget Lowland, Washington–a bonanza for earth science. GSA Today 13:4–10

    Article  Google Scholar 

  • Heim A (1932) Bergsturz und Menschenleben. Fretz and Wasmuth Verlag, Zurich, p 218

    Google Scholar 

  • Heinimann HR, Hollenstein K, Kienholz H, Krummenacher B, Mani P (1998) Methoden zur analyse und Bewertung von Naturgefahren, Bundesamt für Umwelt, Wald und Landschaft (BUWAL), Bern

    Google Scholar 

  • Holmgren P (1994) Multiple flow direction algorithms for runoff modeling in grid based elevation models: an empirical evaluation. Hydrol Process 8:327–334

    Article  Google Scholar 

  • Horton P, Jaboyedoff M, Bardou E (2008) Debris flow susceptibility mapping at a regional scale. In: Locat J, Perret D, Turmel D, Demers D, Leroueil S (ed) Proceedings of the 4th canadian conference on Geohazards. From causes to management. Presse de l’Université Laval, Québec, p 594

    Google Scholar 

  • Huggel C, Kääb A, Haeberli W, Teysseire P, Paul F (2002) Remote sensing based assessment of hazards from glacier lake outbursts: a case study in the Swiss Alps. Can Geotech J 39:316–330

    Article  Google Scholar 

  • Huggel C, Kääb A, Haeberli W, Krummenacher B (2003) Regional-scale GIS-models for assessment of hazards from glacier lake outbursts: evaluation and application in the Swiss Alps. Nat Hazards Earth Syst Sci 3:647–662

    Article  Google Scholar 

  • Hydrological Atlas of Switzerland (2006) Universität Bern and OFEV, Switzerland

    Google Scholar 

  • Jaboyedoff M (2003) CONEFALL 1.0: a program to estimate propagation zones of rockfall based on cone method. Quanterra, www.quanterra.ch

  • Jaboyedoff M, Derron MH (2005) Integrated risk assessment process for landslides. In: Hungr O, Fell R, Couture RR, Eberhardt E (eds) Landslide risk management. On CD included in the book, A.A. Balkema, Leiden

    Google Scholar 

  • Jaboyedoff M, Labiouse V (2003) Preliminary assessment of rockfall hazard based on GIS data. ISRM 2003–technology roadmap for rock mechanics, symposium series—South African Institute of Mining and Metallurgy, vol 1. pp 575–578

    Google Scholar 

  • Jaboyedoff M, Baillifard F, Philippossian F, Rouiller JD (2004) Assessing the fracture occurrence using the “weighted fracturing density”: a step towards estimating rock instability hazard. Nat Hazards Earth Syst Sci 4:83–93

    Article  Google Scholar 

  • Jaboyedoff M, Labiouse V (2011) Technical note: preliminary estimation of rockfall runout zones. Nat Hazards Earth Syst Sci 11:819−828

    Google Scholar 

  • Jaboyedoff M, Pedrazzini A, Horton P, Loye A, Surace I (2008) Preliminary slope mass movements susceptibility mapping using LIDAR DEM. In: Proceedings of the 61th Canadian geotechnical conference and 9th joint CGS/IAH-CNC Grounwater conference. Edmonton, Canada, pp 419–426

    Google Scholar 

  • Jaboyedoff M, Michoud C, Mazotti B, Choffet M, Dubois J, Breguet A, Métraux V, Derron MH, Horton P, Loye A, Pedrazzini A (2010) Cartes Indicatives de dangers pour le Val de Bagnes et de Vollèges. Carnet méthodologique, p 89

    Google Scholar 

  • Jones JL (2004) Mapping a flood… before it happens. Fact sheet 2004–3060, U.S. geological survey, p 2

    Google Scholar 

  • Kappes M, Malet JP, Remaître A, Horton P, Jaboyedoff M (2011) Assessment of debris flow susceptibility at medium-scale in the Ubaye valley, France. Nat Hazards Earth Syst Sci 11:627–641

    Article  Google Scholar 

  • Kasai M, Ikeda M, Asahina T, Fujisawa K (2009) LiDAR-derived DEM evaluation of deep-seated landslides in a steep and rocky region of Japan. Geomorphology 113:57–69

    Article  Google Scholar 

  • Lan HX (2004) Landslide hazard spatial analysis and prediction using GIS inthe xiaojiang watershed, Yunnan, China. Eng Geol 76:109–128

    Article  Google Scholar 

  • Lan H, Martin CD, Lim CH (2007) RockFall analyst: a GIS extension for three-dimensional and spatially distributed rockfall hazard modeling. Comput Geosci 33:262–279

    Article  Google Scholar 

  • Lateltin O (1997) Prise en compte des dangers dus aux mouvements de terrain dans le cadre des activités de l’aménagement du territoire. Recommandations, Office fédéral de l’Environnement, des forêts et du paysage

    Google Scholar 

  • Lari S, Frattini P, Crosta GB, Jaboyedoff M, Horton P (in review) Rockfall and debris flow societal and economic risk assessment at the regional scale. Rendiconti Lincei Scienze Fisiche e Naturali

    Google Scholar 

  • Lied K (1977) Rockfall problems in Norway. Instituto sperimental modelli e stutture Publication 90:51–53

    Google Scholar 

  • Lied K, Bakkehøi S (1980) Empirical calculations of snow avalanche run-out distances based on topographic parameters. J Glaciol 26:165–177

    Google Scholar 

  • Lied K, Kristensen K (2003) Snøskred—Håndbook om snøskred. Vett and Viten AS, Nesbru, Norway, p 200

    Google Scholar 

  • Loat R, Pertrascheck A (1997) Prise en compte des dangers dus aux crues dans le cadre des activités de l’aménagement du territoire. Recommandations, dangers naturels. Office fédéral de l’économie des eaux, Office fédéral de l’aménagement du territoire, Office fédéral de l’environnement, des forêts et du paysage

    Google Scholar 

  • Loye A, Jaboyedoff M, Pedrazzini A (2009) Identification of potential rockfall source areas at a regional scale using a DEM-based geomorphometric analysis. Nat Hazards Earth Syst Sci 9:1643–1653

    Article  Google Scholar 

  • Malamud BD, Turcotte DL, Guzzetti F, Reichenbach P (2004) Landslide inventories and their statistical properties. Earth Surf Proc Land 29:687–711

    Article  Google Scholar 

  • Marco JB (1994) Flood risk mapping. In: Rossi G, Harmancioğlu N, Yevjevich V (ed) Proceedings of the NATO advanced study institute on coping with floods, vol 257. NATO applied sciences series, pp 353–374

    Google Scholar 

  • McClung DM, Schaerer PA (1993) The avalanche handbook. The Mountainers, Seattle, p 271

    Google Scholar 

  • McKean J, Roering J (2004) Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry. Geomorphology 57:331–351

    Article  Google Scholar 

  • Merz B, Thieken AH, Gocht M (2007) Flood risk mapping at the local scale: concepts and challenges. In: Begum S, Stive MJF, Hall JW (eds) Advanced in natural and technological hazards research, vol 25. Springer Publication, New York, pp 231–251

    Google Scholar 

  • Metzger R (2003) Modélisation des inondations par approches déterministe et stochastique avec prise en compte des incertitudes topographiques pour la gestion des risques liés aux crues. Ph.D Thesis, Ecole Polytechnique de Lausanne, Lausanne, Suisse, p 167

    Google Scholar 

  • Montgomery DR, Dietrich WE (1994) A physically-based model for the topographic control on shallow landsliding. Water Resour Res 30:1153–1171

    Article  Google Scholar 

  • Morrissey MM, Wieczorek GF, Morgan BA (2001) A comparative analysis of hazard models for predicting debris flows in Madison county, Virginia. Open file report 01-0067. Geological Survey, US

    Google Scholar 

  • Noverraz F (1995) Carte des instabilités de terrain du Canton de Vaud. Rapport conclusif et explicatif des travaux de levé de cartes. Ecole Polytechnique Fédérale de Lausanne, p 33

    Google Scholar 

  • OFEG (2003) Evaluation des crues dans les bassins versants de Suisse. Guide pratique. Rapport de l’OFEG, Série Eaux, 4. Berne, Suisse, p 114

    Google Scholar 

  • Pack R, Tarboton DG, Goodwill CN (1998) The SINMAP approach to terrain stability mapping. 8th congress of international association of engineering geology, Vancouver

    Google Scholar 

  • Perla RI, Cheng TT, McClung DM (1980) A two-parameter model of snow avalanche motion. J Glaciol 26:197–207

    Google Scholar 

  • Perret J (2007) Géotypes, une relecture, Tracés. Société des éditions des associations techniques universitaires

    Google Scholar 

  • PPR (1999) Plans de prévention des risques naturels—Risques d’inondation. Guide méthodologique. La documentation Française, Paris, France, p 123

    Google Scholar 

  • PPR (2011) Plans de prévention des risques d’avalanches. Guide méthodologique. http://archives.prim.net

  • Pradhan B, Lee S (2010) Regional landslide susceptibility analysis using back-propagation neural network model at Cameron Highland, Malaysia. Landslide 7:13–30

    Article  Google Scholar 

  • Quinn P, Beven K, Chevallier P, Planchon O (1991) The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models. Hydrol Process 5:59–79

    Article  Google Scholar 

  • Rickenmann D, Zimmermann M (1993) The 1987 debris flows in Switzerland: documentation and analysis. Geomorphology 8:175–189

    Article  Google Scholar 

  • Roering JJ, Kirchner JW, Dietrich WE (2005) Characterizing structural and lithologic controls on deep-seated landsliding: Implications for topographic relief and landscape evolution in the Oregon coast range, USA. Geol Soc Am Bull 117:654–668

    Article  Google Scholar 

  • Rouiller JD, Jaboyedoff M, Marro C, Philippossian F, Mamin M (1998) Pentes instables dans le Pennique valaisan. Matterock: une méthodologie d’auscultation des falaises et de détection des éboulements majeurs potentiels. Rapport final du PNR31. VDF Hochschulverlag AG, ETH Zürich, Switzerland, p 238

    Google Scholar 

  • Salciarini D, Godt JW, Savage WZ, Conversini P, Baum RL, Michael JA (2006) Modeling regional initiation of rainfall-induced shallow landslide the eastern Umbria region of central Italy. Landslide 3:181–194

    Article  Google Scholar 

  • Salm B (1983) Guide pratique sur les avalanches. Club Alpin Suisse, Suisse, p 148

    Google Scholar 

  • Sartori M, Gouffon Y, Marthaler M (2006) Harmonisation et définition des unités lithostratigraphiques briançonnaises dans les nappes penniques du Valais. Eclogae Geologicae Helvetiae 99:363–407

    Article  Google Scholar 

  • Scheidegger AE (1973) On the prediction of the reach and velocity of catastrophic landslides. Rock Mech 5:231–236

    Article  Google Scholar 

  • Schulz WH (2004) Landslides mapped using LIDAR imagery, Seattle, Washington. Open-file report 04-1396. Geological survey, US, p 11

    Google Scholar 

  • Schulz WH (2007) Landslide susceptibility revealed by LIDAR imagery and historical records, Seattle, Washington. Eng Geol 89:67–87

    Article  Google Scholar 

  • Shan J, Toth K (2008) Topographic laser ranging and scanning–principles and processing. CRC Press, LLC, p 590

    Book  Google Scholar 

  • Soeters R, Van Westen CJ (1996) Slope instability recognition, analysis, and zonation. In: Turner AK, Schuster RL (ed) Landslides—investigation and mitigation—special report 247, Transportation research board, National research council. National Academy Press, Washington, pp 129–177

    Google Scholar 

  • Strahler AN (1950) Equilibrium theory of erosional slopes approached by frequency distribution analysis. Am J Sci 248(673–696):800–814

    Article  Google Scholar 

  • Swisstopo (2004) MNT25—Le modèle numérique du terrain de la Suisse. Factsheet, Office fédéral de la topographie, p 15

    Google Scholar 

  • Swisstopo (2005) MNT-MO—Les géodonnées de la Suisse proposées par l’Office fédéral de la topographie pour une utilisation à caractère professionnel. Factsheet, Office fédéral de la topographie, p 3

    Google Scholar 

  • Takahashi T (1981) Estimation of potential debris flows and their hazardous zones: Soft countermeasures for a disaster. Nat Disaster Sci 3:57–89

    Google Scholar 

  • Tarboton DG (1997) A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resour Res 33:309–319

    Article  Google Scholar 

  • Thélin P, Gouffin Y, Allimann M (1994) Caractéristiques et métamorphisme des phyllosilicates dans la partie occidentale de la “super” nappe du Grand St-Bernard (Val d’Aoste et Valais). Bulletin Géologique, vol 327. Lausanne

    Google Scholar 

  • Toppe R (1987) Terrain models—a tool for natural hazard mapping. In: Salm B, Gubler H (eds) Avalanche formation, movement and effects, vol 162. IAHS Publication, Wallingford, pp 629–638

    Google Scholar 

  • Trümpy R (1980) Geology of Switzerland—a guide book, part A: an outline of the geology of Switzerland. Wepf & Co, Basel, p 104

    Google Scholar 

  • Turberg P, Parriaux A, Kalbermatten M, Golay F, Lance JM (2008) The geotype concept to develop GIS oriented analysis in engineering geology application. Swiss Geoscience Meeting conference, Lugano

    Google Scholar 

  • Van Alphen J, Martini F, Loat r, Slopm R, Passchier R (2009) Flood risk mapping in Europe, experiences and best practices. J Flood Risk Manage 2:285–292

    Article  Google Scholar 

  • Van Den Eeckhaut M, Poesen J, Verstraeten G, Vanacker V, Nyssen J, Moeyersons J, Van Beek LPH, Vandekerckhove L (2007) Use of LIDAR-derived images for mapping old landslides under forest. Earth Surf Proc Land 32:754–769

    Article  Google Scholar 

  • Van Dijke JJ, van Westen CJ (1990) Rockfall hazard, a geomorphological application of neighbourhood analysis with ILWIS. ITC J 1:40–44

    Google Scholar 

  • Van Westen CJ, Van Asch TWJ, Soeters R (2006) Landslide hazard and risk zonation–why is it so difficult? Bull Eng Geol Environ 65:167–184

    Article  Google Scholar 

  • Varnes DJ (1984) Landslide hazard zonation: a review of principles and practice. United Nations Educational, Scientific and Cultural Organization, Paris, p 63

    Google Scholar 

  • Wieczorek GF, Mandrone G, DeCola L (1997) The influence of hillslope shape on debris-flow initiation. In: ASCE (ed) First international conference water resources engineering division, San Francisco, CA, pp 21–31

    Google Scholar 

  • Wyllie DC, Mah CW (2004) Rock slope engineering–civil and mining, 4th edn. Spon Press, New York, p 431

    Google Scholar 

  • Zeng-Wang X (2001) GIS and ANN model for landslide susceptibility mapping. J Geog Sci 11:374–381

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the authority of the Canton de Vaud for their permission to publish these results and for the helpful discussion we had with D. Moratel and P. Fouvy (SFFN), N. Christinet (DSE), C. Gerber (Cantonal geologist), D. Giorgis (OIT). We thank also the Bagnes municipality and his geologist Dr. F.J. Baillifard for allowing us to publish maps and results and for the useful discussions that make it possible to validate the models. We are also grateful to our colleagues K. Sudmeier for improving the English and to M. Charrière for the creation of the reference list. We are grateful to the National Swiss Foundation for Science project Number 200021-118105 and from the EU project Safeland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jaboyedoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jaboyedoff, M. et al. (2012). Preliminary Slope Mass Movement Susceptibility Mapping Using DEM and LiDAR DEM. In: Pradhan, B., Buchroithner, M. (eds) Terrigenous Mass Movements. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25495-6_5

Download citation

Publish with us

Policies and ethics