Preliminary Slope Mass Movement Susceptibility Mapping Using DEM and LiDAR DEM

  • M. JaboyedoffEmail author
  • M. Choffet
  • M.-H. Derron
  • P. Horton
  • A. Loye
  • C. Longchamp
  • B. Mazotti
  • C. Michoud
  • A. Pedrazzini


Hazard mapping in mountainous areas at the regional scale has greatly changed since the 1990s thanks to improved digital elevation models (DEM). It is now possible to model slope mass movement and floods with a high level of detail in order to improve geomorphologic mapping. We present examples of regional multi-hazard susceptibility mapping through two Swiss case studies, including landslides, rockfall, debris flows, snow avalanches and floods, in addition to several original methods and software tools. The aim of these recent developments is to take advantage of the availability of high resolution DEM (HRDEM) for better mass movement modeling. Our results indicate a good correspondence between inventories of hazardous zones based on historical events and model predictions. This paper demonstrates that by adapting tools and methods issued from modern technologies, it is possible to obtain reliable documents for land planning purposes over large areas.


DEM Lidar Rockfall Debris-flow Floods Snow avalanches Regional hazard mapping Models Flow-R RAS Conefall HISTOFIT 



We are grateful to the authority of the Canton de Vaud for their permission to publish these results and for the helpful discussion we had with D. Moratel and P. Fouvy (SFFN), N. Christinet (DSE), C. Gerber (Cantonal geologist), D. Giorgis (OIT). We thank also the Bagnes municipality and his geologist Dr. F.J. Baillifard for allowing us to publish maps and results and for the useful discussions that make it possible to validate the models. We are also grateful to our colleagues K. Sudmeier for improving the English and to M. Charrière for the creation of the reference list. We are grateful to the National Swiss Foundation for Science project Number 200021-118105 and from the EU project Safeland.


  1. Adjel G (1996) Méthodes statistiques pour la détermination de la distance d’arrêt des avalanches. Ph.D. thesis, Université Joseph-Fourier, Grenoble, FranceGoogle Scholar
  2. Agliardi F, Crosta GB (2003) High resolution three-dimensional numerical modeling of rockfalls. Int J Rock Mech Min Sci 40:455–471CrossRefGoogle Scholar
  3. Aksoy H, Ercanoglu M (2006) Determination of the rockfall source in an urban settlement area by using a rule-based fuzzy evaluation. Nat Hazards Earth Syst Sci 6:941–954CrossRefGoogle Scholar
  4. Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Environ 58:21–44CrossRefGoogle Scholar
  5. Ancey C, Bain V, Bardou E, Borrel G, Burnet R, Jarry F, Kölbl O, Meunier M (2006) Dynamique des avalanches. Presses polytechniques et universitaires romandes (Lausanne, Suisse) and Cemagref (Antony, France), p 338Google Scholar
  6. Ardizzone F, Cardinali M, Galli F, Guzzetti F, Reichenbach P (2007) Identification and mapping of recent rainfall-induced landslides using elevation data collected by airborne lidar. Nat Hazards Earth Syst Sci 7:637–650CrossRefGoogle Scholar
  7. Bai B, Wang J, Pozdnoukhov A, Kanevski MF (2009) Validation of logistic regression models for landslide susceptibility maps, IEEE computer society. In: Proceedings of the 2009 WRI world congress on computer science and information engineering, vol 2. Washington, DC, pp 355–358Google Scholar
  8. Baillifard F, Jaboyedoff M, Sartori M (2003) Rockfall hazard mapping along a mountainous road in Switzerland using a GIS-based parameter rating approach. Nat Hazards Earth Syst Sci 3:435–442CrossRefGoogle Scholar
  9. Baillifard F, Jaboyedoff M, Rouiller JD, Couture R, Locat J, Locat P, Robichaud G, Hamel G (2004) Towards a GIS-based hazard assessment along the Quebec city Promontory, Quebec, Canada. In: Lacerda WA, Ehrlich M, Fontoura AB, Sayao A (eds) Landslides evaluation and stabilization. Balkema, Rotterdam, pp 207–213Google Scholar
  10. Baum RL, Savage WZ, Godt JW (2002) TRIGRS—a fortran program for transient rainfall infiltration and grid-based regional slope stability. Open-file report 02-424, U.S. geological survey, p 61Google Scholar
  11. Beven KJ, Kirkby MJ (1979) A physically based variable contributing area model of basin hydrology. Hydrol Sci Bull 24:43–69CrossRefGoogle Scholar
  12. Beven KJ, Lamb R, Quinn P, Romanowicz R, Freer J (1995) Topmodel. In: Singh VP (ed) Computer models of watershed hydrology. Water Resource Publications, Highlands Ranch, pp 627–668Google Scholar
  13. Blahut J, Horton P, Sterlacchini S, Jaboyedoff M (2010) Debris flow hazard modeling on medium scale: Valtellina di Tirano, Italy. Nat Hazards Earth Syst Sci 10:2379–2390CrossRefGoogle Scholar
  14. Burrough P, McDonnell RA (1998) Principles of geographical information systems. Oxford University Press, Oxford, p 330Google Scholar
  15. Carrara A, Guzetti F (1995) Geographical information systems in assessing natural hazards. Kluwer Academic Publisher, Dordrecht, p 353Google Scholar
  16. Carrara A, Catalano E, Sorriso-Valvo M, Reali C, Osso I (1978) Digital terrain analysis for land evaluation. Geologia Applicata e Idrogeologia 13:69–127Google Scholar
  17. Carrara A, Cardinali M, Detti R, Guzzetti F, Pasqui V, Reichenbach P (1991) GIS techniques and statistical models in evaluating landslide hazard. Earth Surf Proc Land 16:427–445CrossRefGoogle Scholar
  18. Cascini L (2008) Applicability of landslide susceptibility and hazard zoning at different scales. Eng Geol 102:164–177CrossRefGoogle Scholar
  19. Chacón J, Irigaray C, Fernández T, El Hamdouni R (2006) Engineering geology maps: landslides and geographical information systems. Bull Eng Geol Environ 65:341–411CrossRefGoogle Scholar
  20. Chigira M, Duan F, Yagi H, Furuya T (2004) Using an airborne laser scanner for the identification of shallow landslides and susceptibility assessment in an area of ignimbrite overlain by permeable pyroclastics. Landslides 1:203–209CrossRefGoogle Scholar
  21. Chung CJ, Fabbri AG (2008) Predicting landslide for risk analysis–spatial models tested by cross-validation technique. Geomorphology 94:438–452CrossRefGoogle Scholar
  22. Chung CJ, Fabbri AG, Van Westen CJ (1995) Multivariate regression analysis for landslide hazard zonation. In: Geographical information systems in assessing natural hazards. In: Carrara A, Guzetti F (ed) Kluwer Academic Publisher, Dordrecht, pp 107–133Google Scholar
  23. Claessens L, Heuvelink GBM, Schoorl JM, Veldkamp A (2005) DEM resolution effects on shallow landslide hazard and soil redistribution modelling. Earth Surf Proc Land 30:461–477CrossRefGoogle Scholar
  24. Consuegra D, Joerin F, Vitalini F (1995) Flood delineation and impact assessment in agricultural land using GIS technology. In: Carrara A, Guzetti F (eds) Geographical information systems in assessing natural hazards. Kluwer Academic Publisher, Dordrecht, pp 107–133Google Scholar
  25. Crosta GB, Agliardi F (2002) How to obtain alert velocity threshold for large rockslides. Phys Chem Earth 27:1557–1565Google Scholar
  26. Crosta GB, Agliardi F (2003) A methodology for physically based rockfall hazard assessment. Nat Hazards Earth Syst Sci 3:407–422CrossRefGoogle Scholar
  27. Crosta GB, Frattini P, Sterlacchini S (2001) Valutazione e gestione del rischio da frana. Regione Lambardia, Milano, p 169Google Scholar
  28. Cruden DM, Thomson S (1987) Exercises in terrain analysis. The Pica Pica Press, The University of Alberta Press, Edmonton, Alberta, p 185Google Scholar
  29. De Moel H, Van Alphen J, Aerts JCJH (2009) Flood maps in Europe–methods, availability and use. Nat Hazards Earth Syst Sci 9:289–301CrossRefGoogle Scholar
  30. Delmonaco G, Leoni G, Margottini C, Puglisi C, Spizzichino D (2003) Large scale debris-flow hazard assessment: a geotechnical approach and GIS modelling. Nat Hazards Earth Syst Sci 3:443–455CrossRefGoogle Scholar
  31. Desmet PJJ, Govers G (1996) Comparison of routing algorithms for digital elevation models and their implications for predicting ephemeral gullies. Geog Inf Syst 10:311–331Google Scholar
  32. Directive 2007/60/EC of the European parliament and of the council of the 23 Oct 2007 on the assessment and management of flood risks, p 8Google Scholar
  33. Domínguez-Cuesta M, Montserrat JS, Colubi A, González-Rodríguez G (2009) Modelling shallow landslide susceptibility: a new approach in logistic regression by using favourability assessment. Int J Earth Sci. doi:  10.1007/s00531-008-0414-0
  34. Dorren LKA, Seijmonsbergen AC (2003) Comparison of three GIS-based models for predicting rockfall runout zones at a regional scale. Geomorphology 56:49–64CrossRefGoogle Scholar
  35. DUTI (1985) Détection et Utilisation des terrains instables—projet d’Ecole DUTI. Rapport final. Ecole Polytechnique Fédérale de Lausanne, Lausanne, Suisse, p 229Google Scholar
  36. Einstein HH (1988) Special lecture: landslide risk assessment procedure. In: Bonnard C (ed) Proceedings of the 5th international symposium on landslides, vol 2. Balkema, Lausanne, pp 1075–1090, 10–15 July 1988Google Scholar
  37. Endreny TA, Wood EF (2003) Maximizing spatial congruence of observed and DEM-delineated overland flow networks. Int J Geog Inf Sci 17:699–713CrossRefGoogle Scholar
  38. Ercanoglu M, Gokceoglu C (2002) Assessment of landslide susceptibility for a landslide-prone area (north Yenice, NW Turkey) by fuzzy approach. Env Geol 41:720–730CrossRefGoogle Scholar
  39. Ercanoglu M, Gokceoglu C (2004) Use of fuzzy relations to produce landslide susceptibility map of a landslide-prone area (west black sea region, Turkey). Eng Geol 75:229–250CrossRefGoogle Scholar
  40. Erskine R, Green T, Ramirez J, MacDonald L (2006) Comparison of grid-based algorithms for computing upslope contributing area. Water Res Res, p 42Google Scholar
  41. Evans S, Hungr O (1993) The assessment of rockfall hazard at the base of talus slopes. Can Geotech J 30:620–636CrossRefGoogle Scholar
  42. Fairfield J, Leymarie P (1991) Drainage networks from grid digital elevation models. Water Resour Res 27:709–717CrossRefGoogle Scholar
  43. Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ (2008a) Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning. Eng Geol 102:85–98CrossRefGoogle Scholar
  44. Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ (2008b) Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning—commentary. Eng Geol 102:99–111CrossRefGoogle Scholar
  45. Frattini P, Crosta G, Carrara A, Agliardi F (2008) Assessment of rockfall susceptibility by integrating statistical and physicallybased approaches. Geomorphology 94:419–437CrossRefGoogle Scholar
  46. Freeman TG (1991) Calculating catchment area with divergent flow based on a regular grid. Comput Geosci 17:413–422CrossRefGoogle Scholar
  47. Galli M, Ardizzone F, Cardinali M, Guzzetti F, Reichenbach P (2008) Comparing landslide inventory maps. Geomorphology 94:268–289CrossRefGoogle Scholar
  48. Gamma, P. (2000). dfwalk-Ein Murgang-Simulationsprogramm zur Gefahrenzonierung. Inaugural dissertation, Geographisches Institut der Universität BernGoogle Scholar
  49. Gilard O, Gendreau N (1998) Inondabilité: une méthode de prevention raisonnable du risque d’inondation pour une gestion mieux intégrée des bassins versants. Revue des Sci de l’Eau 3:429–444Google Scholar
  50. Glenn NF, Streutker DR, Chadwick DJ, Thackray GD, Dorsch SJ (2006) Analysis of LIDAR-derived topographic information for characterizing and differentiating landslide morphology and activity. Geomorphology 73:131–148CrossRefGoogle Scholar
  51. Gokceoglu C, Sonmez H, Ercanoglu M (2000) Discontinuity controlled probabilistic slope failure risk maps of the Altindag (settlement) region in Turkey. Eng Geol 55:277–296CrossRefGoogle Scholar
  52. Gruber U, Bartelt P (2007) Snow avalanche hazard and modelling of large areas using shallow water numerical methods and GIS. Environ Model Softw 22:1472–1481CrossRefGoogle Scholar
  53. Günther A (2003) SLOPEMAP: programs for automated mapping of geometrical and kinematical properties of hard rock hill slopes. Comput Geosci 29:865–875CrossRefGoogle Scholar
  54. Günther A, Carstensen A, Pohl W (2004) Automated sliding susceptibility mapping of rock slopes. Nat Hazards Earth Syst Sci 4:95–102CrossRefGoogle Scholar
  55. Gupta RP, Saha AK, Arora MK, Kumar A (1999) Landslide hazard zonation in part of the Bhagirathi valley, Garhwal mimalyas, using integrated remote sensing–GIS. Himalayan Geol 20:71–85Google Scholar
  56. Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, central Italy. Geomorphology 31:181–216CrossRefGoogle Scholar
  57. Guzzetti F, Cardinali M, Reichenbach P, Carrara A (2000) Comparing landslide maps: a case study in the upper Tiber River Basin, Central Italy. Environ Manage 25:247–363CrossRefGoogle Scholar
  58. Guzzetti F, Crosta G, Detti R, Agliardi F (2002) STONE: a computer program for the three-dimensional simulation of rock-falls. Comput Geosci 28:1079–1093CrossRefGoogle Scholar
  59. Guzzetti F, Reichenbach P, Wieczorek GF (2003) Rockfall hazard and risk assessment in the Yosemite Valley, California, USA. Nat Hazards Earth Syst Sci 3:491–503CrossRefGoogle Scholar
  60. Haugerud RA, Harding DJ, Johnson SY, Harless JL, Weaver CS (2003) High-resolution LIDAR topography of the Puget Lowland, Washington–a bonanza for earth science. GSA Today 13:4–10CrossRefGoogle Scholar
  61. Heim A (1932) Bergsturz und Menschenleben. Fretz and Wasmuth Verlag, Zurich, p 218Google Scholar
  62. Heinimann HR, Hollenstein K, Kienholz H, Krummenacher B, Mani P (1998) Methoden zur analyse und Bewertung von Naturgefahren, Bundesamt für Umwelt, Wald und Landschaft (BUWAL), BernGoogle Scholar
  63. Holmgren P (1994) Multiple flow direction algorithms for runoff modeling in grid based elevation models: an empirical evaluation. Hydrol Process 8:327–334CrossRefGoogle Scholar
  64. Horton P, Jaboyedoff M, Bardou E (2008) Debris flow susceptibility mapping at a regional scale. In: Locat J, Perret D, Turmel D, Demers D, Leroueil S (ed) Proceedings of the 4th canadian conference on Geohazards. From causes to management. Presse de l’Université Laval, Québec, p 594Google Scholar
  65. Huggel C, Kääb A, Haeberli W, Teysseire P, Paul F (2002) Remote sensing based assessment of hazards from glacier lake outbursts: a case study in the Swiss Alps. Can Geotech J 39:316–330CrossRefGoogle Scholar
  66. Huggel C, Kääb A, Haeberli W, Krummenacher B (2003) Regional-scale GIS-models for assessment of hazards from glacier lake outbursts: evaluation and application in the Swiss Alps. Nat Hazards Earth Syst Sci 3:647–662CrossRefGoogle Scholar
  67. Hydrological Atlas of Switzerland (2006) Universität Bern and OFEV, SwitzerlandGoogle Scholar
  68. Jaboyedoff M (2003) CONEFALL 1.0: a program to estimate propagation zones of rockfall based on cone method. Quanterra,
  69. Jaboyedoff M, Derron MH (2005) Integrated risk assessment process for landslides. In: Hungr O, Fell R, Couture RR, Eberhardt E (eds) Landslide risk management. On CD included in the book, A.A. Balkema, LeidenGoogle Scholar
  70. Jaboyedoff M, Labiouse V (2003) Preliminary assessment of rockfall hazard based on GIS data. ISRM 2003–technology roadmap for rock mechanics, symposium series—South African Institute of Mining and Metallurgy, vol 1. pp 575–578Google Scholar
  71. Jaboyedoff M, Baillifard F, Philippossian F, Rouiller JD (2004) Assessing the fracture occurrence using the “weighted fracturing density”: a step towards estimating rock instability hazard. Nat Hazards Earth Syst Sci 4:83–93CrossRefGoogle Scholar
  72. Jaboyedoff M, Labiouse V (2011) Technical note: preliminary estimation of rockfall runout zones. Nat Hazards Earth Syst Sci 11:819−828Google Scholar
  73. Jaboyedoff M, Pedrazzini A, Horton P, Loye A, Surace I (2008) Preliminary slope mass movements susceptibility mapping using LIDAR DEM. In: Proceedings of the 61th Canadian geotechnical conference and 9th joint CGS/IAH-CNC Grounwater conference. Edmonton, Canada, pp 419–426Google Scholar
  74. Jaboyedoff M, Michoud C, Mazotti B, Choffet M, Dubois J, Breguet A, Métraux V, Derron MH, Horton P, Loye A, Pedrazzini A (2010) Cartes Indicatives de dangers pour le Val de Bagnes et de Vollèges. Carnet méthodologique, p 89Google Scholar
  75. Jones JL (2004) Mapping a flood… before it happens. Fact sheet 2004–3060, U.S. geological survey, p 2Google Scholar
  76. Kappes M, Malet JP, Remaître A, Horton P, Jaboyedoff M (2011) Assessment of debris flow susceptibility at medium-scale in the Ubaye valley, France. Nat Hazards Earth Syst Sci 11:627–641CrossRefGoogle Scholar
  77. Kasai M, Ikeda M, Asahina T, Fujisawa K (2009) LiDAR-derived DEM evaluation of deep-seated landslides in a steep and rocky region of Japan. Geomorphology 113:57–69CrossRefGoogle Scholar
  78. Lan HX (2004) Landslide hazard spatial analysis and prediction using GIS inthe xiaojiang watershed, Yunnan, China. Eng Geol 76:109–128CrossRefGoogle Scholar
  79. Lan H, Martin CD, Lim CH (2007) RockFall analyst: a GIS extension for three-dimensional and spatially distributed rockfall hazard modeling. Comput Geosci 33:262–279CrossRefGoogle Scholar
  80. Lateltin O (1997) Prise en compte des dangers dus aux mouvements de terrain dans le cadre des activités de l’aménagement du territoire. Recommandations, Office fédéral de l’Environnement, des forêts et du paysageGoogle Scholar
  81. Lari S, Frattini P, Crosta GB, Jaboyedoff M, Horton P (in review) Rockfall and debris flow societal and economic risk assessment at the regional scale. Rendiconti Lincei Scienze Fisiche e NaturaliGoogle Scholar
  82. Lied K (1977) Rockfall problems in Norway. Instituto sperimental modelli e stutture Publication 90:51–53Google Scholar
  83. Lied K, Bakkehøi S (1980) Empirical calculations of snow avalanche run-out distances based on topographic parameters. J Glaciol 26:165–177Google Scholar
  84. Lied K, Kristensen K (2003) Snøskred—Håndbook om snøskred. Vett and Viten AS, Nesbru, Norway, p 200Google Scholar
  85. Loat R, Pertrascheck A (1997) Prise en compte des dangers dus aux crues dans le cadre des activités de l’aménagement du territoire. Recommandations, dangers naturels. Office fédéral de l’économie des eaux, Office fédéral de l’aménagement du territoire, Office fédéral de l’environnement, des forêts et du paysageGoogle Scholar
  86. Loye A, Jaboyedoff M, Pedrazzini A (2009) Identification of potential rockfall source areas at a regional scale using a DEM-based geomorphometric analysis. Nat Hazards Earth Syst Sci 9:1643–1653CrossRefGoogle Scholar
  87. Malamud BD, Turcotte DL, Guzzetti F, Reichenbach P (2004) Landslide inventories and their statistical properties. Earth Surf Proc Land 29:687–711CrossRefGoogle Scholar
  88. Marco JB (1994) Flood risk mapping. In: Rossi G, Harmancioğlu N, Yevjevich V (ed) Proceedings of the NATO advanced study institute on coping with floods, vol 257. NATO applied sciences series, pp 353–374Google Scholar
  89. McClung DM, Schaerer PA (1993) The avalanche handbook. The Mountainers, Seattle, p 271Google Scholar
  90. McKean J, Roering J (2004) Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry. Geomorphology 57:331–351CrossRefGoogle Scholar
  91. Merz B, Thieken AH, Gocht M (2007) Flood risk mapping at the local scale: concepts and challenges. In: Begum S, Stive MJF, Hall JW (eds) Advanced in natural and technological hazards research, vol 25. Springer Publication, New York, pp 231–251Google Scholar
  92. Metzger R (2003) Modélisation des inondations par approches déterministe et stochastique avec prise en compte des incertitudes topographiques pour la gestion des risques liés aux crues. Ph.D Thesis, Ecole Polytechnique de Lausanne, Lausanne, Suisse, p 167Google Scholar
  93. Montgomery DR, Dietrich WE (1994) A physically-based model for the topographic control on shallow landsliding. Water Resour Res 30:1153–1171CrossRefGoogle Scholar
  94. Morrissey MM, Wieczorek GF, Morgan BA (2001) A comparative analysis of hazard models for predicting debris flows in Madison county, Virginia. Open file report 01-0067. Geological Survey, USGoogle Scholar
  95. Noverraz F (1995) Carte des instabilités de terrain du Canton de Vaud. Rapport conclusif et explicatif des travaux de levé de cartes. Ecole Polytechnique Fédérale de Lausanne, p 33Google Scholar
  96. OFEG (2003) Evaluation des crues dans les bassins versants de Suisse. Guide pratique. Rapport de l’OFEG, Série Eaux, 4. Berne, Suisse, p 114Google Scholar
  97. Pack R, Tarboton DG, Goodwill CN (1998) The SINMAP approach to terrain stability mapping. 8th congress of international association of engineering geology, VancouverGoogle Scholar
  98. Perla RI, Cheng TT, McClung DM (1980) A two-parameter model of snow avalanche motion. J Glaciol 26:197–207Google Scholar
  99. Perret J (2007) Géotypes, une relecture, Tracés. Société des éditions des associations techniques universitairesGoogle Scholar
  100. PPR (1999) Plans de prévention des risques naturels—Risques d’inondation. Guide méthodologique. La documentation Française, Paris, France, p 123Google Scholar
  101. PPR (2011) Plans de prévention des risques d’avalanches. Guide méthodologique.
  102. Pradhan B, Lee S (2010) Regional landslide susceptibility analysis using back-propagation neural network model at Cameron Highland, Malaysia. Landslide 7:13–30CrossRefGoogle Scholar
  103. Quinn P, Beven K, Chevallier P, Planchon O (1991) The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models. Hydrol Process 5:59–79CrossRefGoogle Scholar
  104. Rickenmann D, Zimmermann M (1993) The 1987 debris flows in Switzerland: documentation and analysis. Geomorphology 8:175–189CrossRefGoogle Scholar
  105. Roering JJ, Kirchner JW, Dietrich WE (2005) Characterizing structural and lithologic controls on deep-seated landsliding: Implications for topographic relief and landscape evolution in the Oregon coast range, USA. Geol Soc Am Bull 117:654–668CrossRefGoogle Scholar
  106. Rouiller JD, Jaboyedoff M, Marro C, Philippossian F, Mamin M (1998) Pentes instables dans le Pennique valaisan. Matterock: une méthodologie d’auscultation des falaises et de détection des éboulements majeurs potentiels. Rapport final du PNR31. VDF Hochschulverlag AG, ETH Zürich, Switzerland, p 238Google Scholar
  107. Salciarini D, Godt JW, Savage WZ, Conversini P, Baum RL, Michael JA (2006) Modeling regional initiation of rainfall-induced shallow landslide the eastern Umbria region of central Italy. Landslide 3:181–194CrossRefGoogle Scholar
  108. Salm B (1983) Guide pratique sur les avalanches. Club Alpin Suisse, Suisse, p 148Google Scholar
  109. Sartori M, Gouffon Y, Marthaler M (2006) Harmonisation et définition des unités lithostratigraphiques briançonnaises dans les nappes penniques du Valais. Eclogae Geologicae Helvetiae 99:363–407CrossRefGoogle Scholar
  110. Scheidegger AE (1973) On the prediction of the reach and velocity of catastrophic landslides. Rock Mech 5:231–236CrossRefGoogle Scholar
  111. Schulz WH (2004) Landslides mapped using LIDAR imagery, Seattle, Washington. Open-file report 04-1396. Geological survey, US, p 11Google Scholar
  112. Schulz WH (2007) Landslide susceptibility revealed by LIDAR imagery and historical records, Seattle, Washington. Eng Geol 89:67–87CrossRefGoogle Scholar
  113. Shan J, Toth K (2008) Topographic laser ranging and scanning–principles and processing. CRC Press, LLC, p 590CrossRefGoogle Scholar
  114. Soeters R, Van Westen CJ (1996) Slope instability recognition, analysis, and zonation. In: Turner AK, Schuster RL (ed) Landslides—investigation and mitigation—special report 247, Transportation research board, National research council. National Academy Press, Washington, pp 129–177Google Scholar
  115. Strahler AN (1950) Equilibrium theory of erosional slopes approached by frequency distribution analysis. Am J Sci 248(673–696):800–814CrossRefGoogle Scholar
  116. Swisstopo (2004) MNT25—Le modèle numérique du terrain de la Suisse. Factsheet, Office fédéral de la topographie, p 15Google Scholar
  117. Swisstopo (2005) MNT-MO—Les géodonnées de la Suisse proposées par l’Office fédéral de la topographie pour une utilisation à caractère professionnel. Factsheet, Office fédéral de la topographie, p 3Google Scholar
  118. Takahashi T (1981) Estimation of potential debris flows and their hazardous zones: Soft countermeasures for a disaster. Nat Disaster Sci 3:57–89Google Scholar
  119. Tarboton DG (1997) A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resour Res 33:309–319CrossRefGoogle Scholar
  120. Thélin P, Gouffin Y, Allimann M (1994) Caractéristiques et métamorphisme des phyllosilicates dans la partie occidentale de la “super” nappe du Grand St-Bernard (Val d’Aoste et Valais). Bulletin Géologique, vol 327. LausanneGoogle Scholar
  121. Toppe R (1987) Terrain models—a tool for natural hazard mapping. In: Salm B, Gubler H (eds) Avalanche formation, movement and effects, vol 162. IAHS Publication, Wallingford, pp 629–638Google Scholar
  122. Trümpy R (1980) Geology of Switzerland—a guide book, part A: an outline of the geology of Switzerland. Wepf & Co, Basel, p 104Google Scholar
  123. Turberg P, Parriaux A, Kalbermatten M, Golay F, Lance JM (2008) The geotype concept to develop GIS oriented analysis in engineering geology application. Swiss Geoscience Meeting conference, LuganoGoogle Scholar
  124. Van Alphen J, Martini F, Loat r, Slopm R, Passchier R (2009) Flood risk mapping in Europe, experiences and best practices. J Flood Risk Manage 2:285–292CrossRefGoogle Scholar
  125. Van Den Eeckhaut M, Poesen J, Verstraeten G, Vanacker V, Nyssen J, Moeyersons J, Van Beek LPH, Vandekerckhove L (2007) Use of LIDAR-derived images for mapping old landslides under forest. Earth Surf Proc Land 32:754–769CrossRefGoogle Scholar
  126. Van Dijke JJ, van Westen CJ (1990) Rockfall hazard, a geomorphological application of neighbourhood analysis with ILWIS. ITC J 1:40–44Google Scholar
  127. Van Westen CJ, Van Asch TWJ, Soeters R (2006) Landslide hazard and risk zonation–why is it so difficult? Bull Eng Geol Environ 65:167–184CrossRefGoogle Scholar
  128. Varnes DJ (1984) Landslide hazard zonation: a review of principles and practice. United Nations Educational, Scientific and Cultural Organization, Paris, p 63Google Scholar
  129. Wieczorek GF, Mandrone G, DeCola L (1997) The influence of hillslope shape on debris-flow initiation. In: ASCE (ed) First international conference water resources engineering division, San Francisco, CA, pp 21–31Google Scholar
  130. Wyllie DC, Mah CW (2004) Rock slope engineering–civil and mining, 4th edn. Spon Press, New York, p 431Google Scholar
  131. Zeng-Wang X (2001) GIS and ANN model for landslide susceptibility mapping. J Geog Sci 11:374–381CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • M. Jaboyedoff
    • 1
    Email author
  • M. Choffet
    • 1
  • M.-H. Derron
    • 1
  • P. Horton
    • 1
  • A. Loye
    • 1
  • C. Longchamp
    • 1
  • B. Mazotti
    • 1
  • C. Michoud
    • 1
  • A. Pedrazzini
    • 1
  1. 1.Institute of Risk Analysis-University of LausanneLausanneSwitzerland

Personalised recommendations