Advertisement

An Outline for an Intelligent System Performing Peg-in-Hole Actions with Flexible Objects

  • Andreas Jordt
  • Andreas R. Fugl
  • Leon Bodenhagen
  • Morten Willatzen
  • Reinhard Koch
  • Henrik G. Petersen
  • Knud A. Andersen
  • Martin M. Olsen
  • Norbert Krüger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7102)

Abstract

We describe the outline of an adaptable system which is able to perform grasping and peg-in-hole actions with flexible objects. The system makes use of visual tracking and shape reconstruction, physical modeling of flexible material and learning based on a kernel density approach. We show results for the different sub-modules in simulation as well as real world data.

Keywords

NURBS Surface World Coordinate System Deformable Surface Behavioral Robotic Paladyn Journal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bell, M.: Flexible object manipulation. Ph.D. thesis, Dartmouth College Hanover, New Hampshire (2010)Google Scholar
  2. 2.
    Cagniart, C., Boyer, E., Ilic, S.: Probabilistic Deformable Surface Tracking from Multiple Videos. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 326–339. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Chen, C.H., Kak, A.C.: Modelling and calibration of a structured light scanner for 3d robot vision. In: IEEE Conf. on Robotics and Automation, pp. 807–815 (1987)Google Scholar
  4. 4.
    Detry, R., Kraft, D., Kroemer, O., Bodenhagen, L., Peters, J., Krüger, N., Piater, J.: Learning grasp affordance densities. Paladyn Journal of Behavioral Robotics (2011) (accepted)Google Scholar
  5. 5.
    Erkamp, R., Wiggins, P., Skovoroda, A., Emelianov, S., ODonnell, M.: Measuring the elastic modulus of small tissue samples. Ann Arbor 1001, 48109–2125 (1998)Google Scholar
  6. 6.
    Griesser, A., Koninckx, T.P., Gool, L.V.: Adaptive real-time 3d acquisition and contour tracking within a multiple structured light system. In: Proceedings of the Computer Graphics and Applications, 12th Pacific Conference, PG 2004 (2004)Google Scholar
  7. 7.
    Hansen, N.: The CMA evolution strategy: a comparing review. In: Towards a New Evolutionary Computation. Advances on Estimation of Distribution Algorithms. Springer, Heidelberg (2006)Google Scholar
  8. 8.
    Howard, A., Bekey, G.: Recursive learning for deformable object manipulation. In: Proceedings., 8th Int.l Conf. on Advanced Robotics, ICAR 1997 (1999)Google Scholar
  9. 9.
    Jordt, A., Schiller, I., Bruenger, J., Koch, R.: High-Resolution Object Deformation Reconstruction with Active Range Camera. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds.) Pattern Recognition. LNCS, vol. 6376, pp. 543–552. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Jørgensen, J.A., Ellekilde, L.-P., Petersen, H.G.: RobWorkSim - an open simulator for sensor based grasping. In: Joint 41st Int. Sym. on Robotics, ISR (2010)Google Scholar
  11. 11.
    Landau, L.D., Pitaevskii, L.P., Lifshitz, E.M., Kosevich, A.M.: Theory of Elasticity. Butterworth-Heinemann (1986)Google Scholar
  12. 12.
    Mosegaard, J.: Cardiac Surgery Simulation - Graphics Hardware meets Congenital Heart Disease. Ph.D. thesis, Department of Computer Science, University of Aarhus, Denmark (2006)Google Scholar
  13. 13.
    Nehab, D.: Advances in 3D Shape Acquisition. Ph.D. thesis, Princeton University (September 2007)Google Scholar
  14. 14.
    Piegl, L.: On nurbs: a survey. IEEE Comput. Graph. Appl. 11, 55–71 (1991)CrossRefGoogle Scholar
  15. 15.
    Provot, X.: Deformation constraints in a mass-spring model to describe rigid cloth behaviour. Graphics Interface (1995)Google Scholar
  16. 16.
    Reznik, D., Laugier, C.: Dynamic simulation and virtual control of a deformable fingertip. In: Proceedings. IEEE International Conference on Robotics and Automation, vol. 2, pp. 1669–1674. IEEE (1996)Google Scholar
  17. 17.
    Rosenhahn, B., Kersting, U., Powell, K., Klette, R., Klette, G., Seidel, H.P.: A system for articulated tracking incorporating a clothing model. Machine Vision and Applications 18(1), 25–40 (2007)CrossRefGoogle Scholar
  18. 18.
    Salzmann, M., Lepetit, V., Fua, P.: Deformable surface tracking ambiguities. In: CVPR. IEEE Computer Society (2007)Google Scholar
  19. 19.
    Sangpradit, K., Liu, H., Seneviratne, L., Althoefer, K.: Tissue identification using inverse finite element analysis of rolling indentation. In: IEEE International Conference on Robotics and Automation, ICRA 2009, pp. 1250–1255 (May 2009)Google Scholar
  20. 20.
    Schiller, I., Beder, C., Koch, R.: Calibration of a pmd camera using a planar calibration object together with a multi-camera setup. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXVII. Part B3a (2008)Google Scholar
  21. 21.
    Shen, S., Zheng, Y., Liu, Y.: Deformable surface stereo tracking-by-detection using second order cone programming. In: ICPR, pp. 1–4. IEEE (2008)Google Scholar
  22. 22.
    Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman and Hall/CRC (1986)Google Scholar
  23. 23.
    Takamuku, S., Gomez, G., Hosoda, K., Pfeifer, R.: Haptic discrimination of material properties by a robotic hand. In: IEEE 6th Int. Conf. on Development and Learning, ICDL (2007)Google Scholar
  24. 24.
    Willatzen, M., Wang, L.: Mathematical modelling of one-dimensional piezoelectric transducers based on monoclinic crystals. Acta Acustica united with Acustica 93(6), 716–721 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Andreas Jordt
    • 3
  • Andreas R. Fugl
    • 1
    • 2
  • Leon Bodenhagen
    • 1
  • Morten Willatzen
    • 2
  • Reinhard Koch
    • 3
  • Henrik G. Petersen
    • 1
  • Knud A. Andersen
    • 4
  • Martin M. Olsen
    • 4
  • Norbert Krüger
    • 1
  1. 1.The Maersk Mc-Kinney Moller InstituteUniversity of Southern DenmarkDenmark
  2. 2.Mads Clausen InstituteUniversity of Southern DenmarkDenmark
  3. 3.Institute of Computer ScienceChristian-Albrechts-Universität KielGermany
  4. 4.Centre for Robot TechnologyDanish Technological InstituteDenmark

Personalised recommendations