Skip to main content

Window Function for EEG Power Density Estimation and Its Application in SSVEP Based BCIs

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 7102)

Abstract

A high quality power density estimation for certain frequency components in a short time is of key importance in Steady-State Visual Evoked Potentials (SSVEP) based Brain Computer Interface (BCI). In this paper, the effect of the window functions in SSVEP based BCIs is discussed. EEG signal is a typical color noise with a high energy of the low frequency component. The main findings are that (1) The spectral leakage for EEG signals has some regular patterns. An obvious oscillation with the corresponding frequency can be observed. The amplitude of the oscillation decreases with the growth of the frequency. A short analysis is also given for the leakage. (2) The leakage from the low frequency component can be effectively suppressed by the using of some windows, such as Hamming, Hann and triangle window; (3) By removing the influence of the leakage from the low frequency component with high pass filter, the classification results are mainly determined by the width of the main lobe. The rectangle window would have a better accuracy than Hamming, Hann and triangle window. Some windows constructed with a narrower main lobe width have a potential use in SSVEP based BCIs.

Keywords

  • SSVEP
  • EEG
  • Lowpass Filter
  • STFT

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-25489-5_14
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-25489-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clinical Neurophysiology 113(6), 767–791 (2002)

    CrossRef  Google Scholar 

  2. Garcia, G.: High frequency SSVEPs for BCI applications, In: Computer-Human Interaction (2008)

    Google Scholar 

  3. Lin, Z., Zhang, C., Wu, W., Gao, X.: Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs. IEEE Transactions on Biomedical Engineering 54(6), 1172–1176 (2007)

    CrossRef  Google Scholar 

  4. Wu, Z., Yao, D.: Frequency detection with stability coefficient for steady-state visual evoked potential (SSVEP)-based BCIs. Journal of Neural Engineering 5, 36 (2008)

    CrossRef  Google Scholar 

  5. Pfurtscheller, G., Solis-Escalante, T., Ortner, R., Linortner, P.: Self-Paced Operation of an SSVEP-Based Orthosis With and Without an Imagery-Based” Brain Switch”: A Feasibility Study Towards a Hybrid BCI. IEEE Transactions on Neural Systems and Rehabilitation Engineering: a Publication of the IEEE Engineering in Medicine and Biology Society 18(4), 409–414 (2010)

    CrossRef  Google Scholar 

  6. Cheng, M., Gao, X., Gao, S., Xu, D.: Design and implementation of a brain-computer interface with high transfer rates. IEEE Transactions on Biomedical Engineering 49(10), 1181–1186 (2002)

    CrossRef  Google Scholar 

  7. Trejo, L.J., Rosipal, R., Matthews, B.: Brain–computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials. IEEE Transactions on Neural Systems and Rehabilitation Engineering 14(2), 225 (2006)

    CrossRef  Google Scholar 

  8. Muller-Putz, G.R., Pfurtscheller, G.: Control of an electrical prosthesis with an SSVEP-based BCI. IEEE Transactions on Biomedical Engineering 55(1), 361–364 (2008)

    CrossRef  Google Scholar 

  9. Gollee, H., Volosyak, I., McLachlan, A., Hunt, K., Graser, A.: An SSVEP based brain-computer interface for the control of functional electrical stimulation. IEEE Transactions on Bio-Medical Engineering 57(8), 1847–1855 (2010)

    CrossRef  Google Scholar 

  10. Edlinger, G., Groenegress, C., Prückl, R., Guger, C., Slater, M.: Goal orientated Brain-Computer interfaces for Control: a virtual smart home application study. BMC Neuroscience 11(suppl. 1), 134 (2010)

    CrossRef  Google Scholar 

  11. Burkitt, G.R., Silberstein, R.B., Cadusch, P.J., Wood, A.W.: Steady-state visual evoked potentials and travelling waves. Clinical Neurophysiology 111(2), 246–258 (2000)

    CrossRef  Google Scholar 

  12. Friman, O., Volosyak, I., Graser, A.: Multiple channel detection of steady-state visual evoked potentials for brain-computer interfaces. IEEE Transactions on Biomedical Engineering 54(4), 742–750 (2007)

    CrossRef  Google Scholar 

  13. Cui, J., Wong, W.: The adaptive chirplet transform and visual evoked potentials. IEEE Transactions on Biomedical Engineering 53(7), 1378–1384 (2006)

    CrossRef  Google Scholar 

  14. Chatrian, G.E., Lettich, E., Nelson, P.L.: Ten percent electrode system for topographic studies of spontaneous and evoked EEG activity. Am. J. EEG Technol. 25, 83–92 (1985)

    Google Scholar 

  15. Krzanowski, W.J.: Principles of multivariate analysis: a user’s perspective. Oxford University Press, USA (2000)

    MATH  Google Scholar 

  16. Seber, G.A.F.: Multivariate Observations (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Huang, G., Meng, J., Zhang, D., Zhu, X. (2011). Window Function for EEG Power Density Estimation and Its Application in SSVEP Based BCIs. In: Jeschke, S., Liu, H., Schilberg, D. (eds) Intelligent Robotics and Applications. ICIRA 2011. Lecture Notes in Computer Science(), vol 7102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25489-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25489-5_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25488-8

  • Online ISBN: 978-3-642-25489-5

  • eBook Packages: Computer ScienceComputer Science (R0)