Partial Plagiarism Detection Using String Matching with Mismatches

  • Tetsuya Nakatoh
  • Kensuke Baba
  • Yasuhiro Yamada
  • Daisuke Ikeda
Part of the Communications in Computer and Information Science book series (CCIS, volume 254)


In recent years, many documents are created as an electronic one and are distributed. Although those costs were reduced remarkably, the copy of a document could also be created easily. Spreading of plagiarism or violation of copyright is the big issue which controls production of a valuable document. Therefore, the system which detects plagiarism is very important. Many plagiarism detection systems have aimed to detect a document chiefly similar to query. However, it is not easy to detect a partially similar document. When the document with the possibility to plagiarize or to be plagiarized is not given, the detection of a similar document by mutual comparisons of all documents is more difficult. We propose the method that detects partial copies from documents without query. Some partial copies were detected from test documents.


Plagiarism Detection Approximate String Matching FFT 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atallah, M., Chyzak, F., Dumas, P.: A randomized algorithm for approximate string matching. Algorithmica 29(3), 468–486 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Baba, K., Shinohara, A., Takeda, M., Inenaga, S., Arikawa, S.: A note on randomized algorithm for string matching with mismatches. Nordic Journal of Computing 10, 2–12 (2003)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Baba, K., Tanaka, Y., Nakatoh, T., Shinohara, A.: A generalization of FFT algorithm for string matching. In: Proc. of International Symposium on Information Science and Electrical Engineering, pp. 191–194 (2003)Google Scholar
  4. 4.
    Brin, S., Davis, J., Garcia-Molina, H.: Copy detection mechanisms for digital documents. In: Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data, pp. 398–409. ACM (1995)Google Scholar
  5. 5.
    Broder, A., Glassman, S., Manasse, M., Zweig, G.: Syntactic clustering of the web. Computer Networks and ISDN Systems 29(8-13), 1157–1166 (1997)CrossRefGoogle Scholar
  6. 6.
    Charikar, M.: Similarity estimation techniques from rounding algorithms. In: Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Computing, pp. 380–388. ACM (2002)Google Scholar
  7. 7.
    Crochemore, M., Rytter, W.: Text algorithms. Oxford University Press, Inc., New York (1994)zbMATHGoogle Scholar
  8. 8.
    Crochemore, M., Rytter, W.: Jewels of Stringology. World Scientific Publishing Company (2002)Google Scholar
  9. 9.
    Fischer, M.J., Paterson, M.S.: String-matching and other products. In: Proceedings of the SIAM-AMS Applied Mathematics Symposium, pp. 113–125. Massachusetts Institute of Technology, Cambridge (1974)Google Scholar
  10. 10.
    Gusfield, D.: Algorithms on strings, trees, and sequences. Cambridge University Press, New York (1997)CrossRefzbMATHGoogle Scholar
  11. 11.
    Henzinger, M.: Finding near-duplicate web pages: a large-scale evaluation of algorithms. In: Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 284–291. ACM (2006)Google Scholar
  12. 12.
    Jun-Peng, B., Jun-Yi, S., Xiao-Dong, L., Hai-Yan, L., Xiao-Di, Z.: Document copy detection based on kernel method. In: International Conference on Natural Language Processing and Knowledge Engineering, 2003, pp. 250–255. IEEE (2003)Google Scholar
  13. 13.
    Kang, N., Gelbukh, A., Han, S.-Y.: PPChecker: Plagiarism Pattern Checker in Document Copy Detection. In: Sojka, P., Kopeček, I., Pala, K. (eds.) TSD 2006. LNCS (LNAI), vol. 4188, pp. 661–667. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Lancaster, T., Culwin, F.: Classifications of plagiarism detection engines. ITALICS, 4 (2005)Google Scholar
  15. 15.
    Lukashenko, R., Graudina, V., Grundspenkis, J.: Computer-based plagiarism detection methods and tools: an overview. In: Proceedings of the 2007 International Conference on Computer Systems and Technologies, pp. 1–6. ACM (2007)Google Scholar
  16. 16.
    Lyon, C., Malcolm, J., Dickerson, B.: Detecting short passages of similar text in large document collections. In: Proceedings of the 2001 Conference on Empirical Methods in Natural Language Processing, Citeseer, pp. 118–125 (2001)Google Scholar
  17. 17.
    Monostori, K., Zaslavsky, A., Schmidt, H.: Document overlap detection system for distributed digital libraries. In: Proceedings of the Fifth ACM Conference on Digital Libraries, pp. 226–227. ACM (2000)Google Scholar
  18. 18.
    Nakatoh, T., Baba, K., Ikeda, D., Mori, M., Hirokawa, S.: Accuracy evaluation of FFT-based randomized algorithms for string matching with mismatches. IPSJ Transactions on Databases (TOD) 2(4), 24–31 (2009) (in Japanese)Google Scholar
  19. 19.
    Nakatoh, T., Baba, K., Mori, M., Hirokawa, S.: An optimal mapping for score of string matching with FFT. DBSJ Letters 6(3), 25–28 (2007) (in Japanese)Google Scholar
  20. 20.
    Schoenmeyr, T., Zhang, D.Y.: FFT-based algorithms for the string matching with mismatches problem. Journal of Algorithms 57(2), 130–139 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Shivakumar, N., Garcia-Molina, H.: Scam: A copy detection mechanism for digital documents. In: Proceedings of the Second Annual Conference on the Theory and Practice of Digital Libraries (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Tetsuya Nakatoh
    • 1
  • Kensuke Baba
    • 2
  • Yasuhiro Yamada
    • 3
  • Daisuke Ikeda
    • 2
  1. 1.Research Institute for Information TechnologyKyushu UniversityHigashi-kuJapan
  2. 2.Kyushu UniversityJapan
  3. 3.Shimane UniversityShimaneJapan

Personalised recommendations