Advertisement

Invariant Hand Biometrics Feature Extraction

  • Alberto de Santos Sierra
  • Carmen Sánchez Ávila
  • Javier Guerra Casanova
  • Gonzalo Bailador del Pozo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7098)

Abstract

Hand biometrics relies strongly on a proper hand segmentation and a feature extraction method to obtain accurate results in individual identification. Former operations must be carried out involving as less user collaboration as possible, in order to avoid intrusive or invasive actions on individuals.

This document presents an approach for hand segmentation and feature extraction on scenarios where users can place the hand on a flat surface freely, without no constraint on hand openness, rotation and pressure.

The performance of the algorithm highlights the fact that in less than 4 seconds, the method can detect properly finger tips and valleys with a global accuracy of 97% on a database of 300 users, achieving the second position in the International Hand Geometric Competition HGC 2011.

Keywords

Hand segmentation invariant feature extraction mathematical morphology biometrics hand geometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alhussain, T., Drew, S., Alfarraj, O.: Biometric authentication for mobile government security. In: 2010 IEEE International Conference on Intelligent Computing and Intelligent Systems (ICIS), vol. 2, pp. 114–118 (2010) iD: 1Google Scholar
  2. 2.
    Alpert, S., Galun, M., Basri, R., Brandt, A.: Image segmentation by probabilistic bottom-up aggregation and cue integration. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–8 (June 2007)Google Scholar
  3. 3.
    Arif, M., Brouard, T., Vincent, N.: Personal identification and verification by hand recognition. In: 2006 IEEE International Conference on Engineering of Intelligent Systems, pp. 1–6 (2006)Google Scholar
  4. 4.
    Ashbourn, J.: Practical implementation of biometrics based on hand geometry. In: IEE Colloquium on Image Processing for Biometric Measurement, pp. 5/1–5/6 (1994) iD: 1Google Scholar
  5. 5.
    de Santos Sierra, A., Guerra Casanova, J., Sánchez Ávila, C., Jara Vera, V.: Silhouette-based hand recognition on mobile devices. In: 43rd Annual 2009 International Carnahan Conference on Security Technology, pp. 160–166 (October 2009)Google Scholar
  6. 6.
    Doublet, J., Lepetit, O., Revenu, M.: Contact less hand recognition using shape and texture features. In: 2006 8th International Conference on Signal Processing, vol. 3 (2006) iD: 1 Google Scholar
  7. 7.
    Doublet, J., Lepetit, O., Revenu, M.J.: Contactless hand recognition based on distribution estimation. In: Biometrics Symposium, pp. 1–6 (2007) iD:1Google Scholar
  8. 8.
    Ferrer, M., Fabregas, J., Faundez, M., Alonso, J., Travieso, C.: Hand geometry identification system performance. In: 43rd Annual 2009 International Carnahan Conference on Security Technology, 2009, pp. 167–171 (5-8, 2009)Google Scholar
  9. 9.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Addison-Wesley Longman Publishing Co., Inc., Boston (1992)Google Scholar
  10. 10.
    Kanhangad, V., Kumar, A., Zhang, D.: Combining 2d and 3d hand geometry features for biometric verification. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2009, pp. 39–44 (20-25, 2009)Google Scholar
  11. 11.
    Lew, Y.P., Ramli, A.R., Koay, S.Y., Ali, R., Prakash, V.: A hand segmentation scheme using clustering technique in homogeneous background. In: Student Conference on Research and Development, SCOReD 2002, pp. 305–308 (2002) iD: 1Google Scholar
  12. 12.
    Magalhaes, F., Oliveira, H.P., Matos, H., Campilho, A.: hGC2011 - Hand Geometric Points Detection Competition Database (2010), http://www.fe.up.pt/~hgc2011/
  13. 13.
    Morales, A., Ferrer, M., Alonso, J., Travieso, C.: Comparing infrared and visible illumination for contactless hand based biometric scheme. In: 42nd Annual IEEE International Carnahan Conference on Security Technology, ICCST 2008, pp. 191–197 (2008)Google Scholar
  14. 14.
    García-Casarrubios Muñoz, Á., Sánchez Ávila, C., de Santos Sierra, A., Guerra Casanova, J.: A Mobile-Oriented Hand Segmentation Algorithm Based on Fuzzy Multiscale Aggregation. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Chung, R., Hammoud, R., Hussain, M., Kar-Han, T., Crawfis, R., Thalmann, D., Kao, D., Avila, L. (eds.) ISVC 2010, Part I. LNCS, vol. 6453, pp. 479–488. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Munoz, A.C., de Santos Sierra, A., Ávila, C., Casanova, J., del Pozo, G., Vera, V.: Hand biometric segmentation by means of fuzzy multiscale aggregation for mobile devices. In: 2010 International Workshop on Emerging Techniques and Challenges for Hand-Based Biometrics (ETCHB), pp. 1–6 (2010)Google Scholar
  16. 16.
    Sanchez-Reillo, R., Sanchez-Avila, C., Gonzalez-Marcos, A.: Biometric identification through hand geometry measurements. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(10), 1168–1171 (2000)CrossRefGoogle Scholar
  17. 17.
    Spruyt, V., Ledda, A., Geerts, S.: Real-time multi-colourspace hand segmentation. In: 2010 17th IEEE International Conference on Image Processing (ICIP), pp. 3117–3120 (2010) iD: 1Google Scholar
  18. 18.
    Yoruk, E., Konukoglu, E., Sankur, B., Darbon, J.: Shape-based hand recognition. IEEE Transactions on Image Processing 15(7), 1803–1815 (2006)CrossRefGoogle Scholar
  19. 19.
    Zheng, G., Wang, C.J., Boult, T.E.: Application of projective invariants in hand geometry biometrics. IEEE Transactions on Information Forensics and Security 2(4), 758–768 (2007) iD: 1CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Alberto de Santos Sierra
    • 1
  • Carmen Sánchez Ávila
    • 1
  • Javier Guerra Casanova
    • 1
  • Gonzalo Bailador del Pozo
    • 1
  1. 1.Group of Biometrics, Biosignals and Security (GB2S) Centro de Domótica Integral (CeDInt-UPM)Universidad Politécnica de Madrid Campus de MontegancedoMadridSpain

Personalised recommendations