Iterative Directional Ray-Based Iris Segmentation for Challenging Periocular Images

  • Xiaofei Hu
  • V. Paúl Pauca
  • Robert Plemmons
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7098)


The face region immediately surrounding one, or both, eyes is called the periocular region. This paper presents an iris segmentation algorithm for challenging periocular images based on a novel iterative ray detection segmentation scheme. Our goal is to convey some of the difficulties in extracting the iris structure in images of the eye characterized by variations in illumination, eye-lid and eye-lash occlusion, de-focus blur, motion blur, and low resolution. Experiments on the Face and Ocular Challenge Series (FOCS) database from the U.S. National Institute of Standards and Technology (NIST) emphasize the pros and cons of the proposed segmentation algorithm.


Iris segmentation ray detection periocular images 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chan, T.F., Vese, L.A.: Active Contours Without Edges. IEEE Transactionson Image Processing 10(2), 266–277 (2001)CrossRefzbMATHGoogle Scholar
  2. 2.
    Daugman, J.: How iris recognition works. In: Proceedings of the International Conference on Image Processing, vol. 1 (2002)Google Scholar
  3. 3.
    He, Z., Tan, T., Sun, Z., Qiu, X.: Towards accurate and fast iris segmentation for iris biometrics. IEEE Trans. On Pattern Analysis and Machine Intelligence 31(9), 1617–1632 (2009)Google Scholar
  4. 4.
    Illingworth, J., Kittler, J.: A survey of the Hough transform. Computer Vision, Graph. Image Processing 44, 87–116 (1988)CrossRefGoogle Scholar
  5. 5.
    Proenca, H.: Iris recognition: on the segmentation of degraded images acquired in the visible wavelength. IEEE Trans. on Pattern Analysis and Machine Intelligence 32(8), 1502–1516 (2010)CrossRefGoogle Scholar
  6. 6.
    Jillela, R., Ross, A., Boddeti, N., Vijaya Kumar, B., Hu, X., Plemmons, R., Pauca, P.: An Evaluation of Iris Segmentation Algorithms in Challenging Periocular Images. In: Burge, M., Bowyer, K. (eds.) Handbook of Iris Recognition, Springer, Heidelberg (to appear, 2012)Google Scholar
  7. 7.
    Li, D., Babcock, J., Parkhurst, D.J.: Openeyes: A Low-Cost Head-Mounted Eye-Tracking Solution. In: Proceedings of the 2006 Symposium on Eye Tracking Research and Applications. ACM Press, San Diego (2006)Google Scholar
  8. 8.
    Masek, L.: Recognition of human iris patterns for biometric identification. Thesis (2003)Google Scholar
  9. 9.
    Ryan, W., Woodard, D., Duchowski, A., Birchfield, S.: Adapting Starburst for Elliptical Iris Segmentation. In: Proceeding IEEE Second International Conference on Biometrics: Theory, Applications and Systems (BTAS). IEEE Press, Washington (2008)Google Scholar
  10. 10.
    Roth, S., Black, M.J.: Fields of Experts. International Journal of Computer Vision 82(2), 205–229 (2009)CrossRefGoogle Scholar
  11. 11.
    Vese, L.A., Chan, T.F.: A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. International Journal of Computer Vision 50(3), 271–293 (2002)CrossRefzbMATHGoogle Scholar
  12. 12.
    Vijaya Kumar, B.V.K., Hassebrook, L.: Performance Measures for Correlation Filters. Applied Optics 29, 2997–3006 (1990)CrossRefGoogle Scholar
  13. 13.
    Vijaya Kumar, B.V.K., Savvides, M., Venkataramani, K., Xie, C., Thornton, J., Mahalanobis, A.: Biometric Verification Using Advanced Correlation Filters. Applied Optics 43, 391–402 (2004)CrossRefGoogle Scholar
  14. 14.
    Wildes, R., Asmuth, J., Green, G., Hsu, S., Kolczynski, R., Matey, J., McBride, S.: A System for Automated Iris Recognition. In: Proceedings of the Second IEEE Workshop on Applications of Computer Vision, pp. 121–128 (December 1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Xiaofei Hu
    • 1
  • V. Paúl Pauca
    • 1
  • Robert Plemmons
    • 1
  1. 1.Departments of Mathematics and Computer ScienceWinston-SalemUnited States

Personalised recommendations