Why Won’t You Do What’s Good for You? Using Intelligent Support for Behavior Change

  • Michel Klein
  • Nataliya Mogles
  • Arlette van Wissen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7065)


Human health depends to a large extent on their behavior. Adopting a healthy lifestyle often requires behavior change. This paper presents a computational model of behavior change that describes formal relations between the determinants of behavior change, based on existing psychological theories. This model is developed to function as the core of a reasoning mechanism of an intelligent support system that is able to create theory-based intervention messages. The system first tries to determine the reason of the occurrence of the unwanted behavior by asking short questions via a mobile phone application and by gathering information from an online lifestyle diary. The system then attempts to influence the user using tailored information and persuasive motivational messages.


Mobile Phone Behavior Change Chronic Migraine Health Belief Model Connection Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anhoj, J., Nielsen, L.: Quantitative and qualitative usage data of an internet-based asthma monitoring tool. Journal of Medical Internet Resources 6(23) (2004)Google Scholar
  2. 2.
    Armitage, C.J., Conner, M.: Social cognition models and health behaviour: A structured review. Psychology and Health 15, 173–189 (2000)CrossRefGoogle Scholar
  3. 3.
    Bandura, A.: Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review 84(2), 191–215 (1977)CrossRefGoogle Scholar
  4. 4.
    Barlow, J., Wright, C., Sheasby, J., Turner, A., Hainsworth, J.: Self-management approaches for people with chronic conditions: a review. Patient Education and Counseling 48, 177–187 (2002)CrossRefGoogle Scholar
  5. 5.
    van den Berg, H.M., Rondaly, H.K., Peeters, A.J., van der Harst, E.M.V., Munneke, M., Breedveld, F.C., Vlieland, T.P.M.V.: Engagement and satisfaction with an internet-based physical activity intervention in patients with rheumatoid arthritis. Rheumatoloty 46(3), 545–552 (2007)CrossRefGoogle Scholar
  6. 6.
    Davis, R.: Diagnostic reasoning based on structure and behavior. Artificial Intelligence 24(1-3), 347–410 (1984)CrossRefGoogle Scholar
  7. 7.
    Downer, S.R., Meara, J.G., Costa, A.C.D.: Use of sms text messaging to improve outpatient attendance. Medical Journal of Australia 183(7) (2005)Google Scholar
  8. 8.
    Eysenbach, G.: What is e-health? Journal of Medical Internet Research 3(2)Google Scholar
  9. 9.
    Fishbein, M., Ajzen, I.: Belief, attitude, Intention and behaviour: An Introduction to Theory and research. Addison-Wesley, Reading (1975)Google Scholar
  10. 10.
    Fogg, B.J., Eckles, D.: Mobile Persuasion, 20 Perspectives on the Future of Behavior Change. Stanford Captology Media (2007)Google Scholar
  11. 11.
    Halm, E.A., Mora, P., Leventhal, H.: No symptoms, no asthma*. Chest 129(3), 573–580 (2006)CrossRefGoogle Scholar
  12. 12.
    Hanauer, D.A., Wentzell, K., Laffel, N., Laffel, L.M.: Computerized automated reminder diabetes system (cards): E-mail and sms cell phone text messaging reminders to support diabetes management. Diabetes Techn. and Therapeutics 11(2) (2009)Google Scholar
  13. 13.
    Henkemans, O.A.B., van der Boog, P.J.M., Lindenberg, J., van der Mast, C.A.P.G., Neerincx, M.A., Zwetsloot-Schonk, B.J.H.M.: Technology and Health Care 17, 253–267 (2009)Google Scholar
  14. 14.
    Henkemans, O.A.B., Rogers, W.A., Fisk, A.D., Neerincx, M.A., Lindenberg, J., van der Mast, C.A.P.G.: Ussability of an adaptive computer assistant that improves self-care and health literacy of older adults. Methods of Inf. in Medicine 47, 82–88 (2007)Google Scholar
  15. 15.
    Inc., F.: Lose it! (July 2011),
  16. 16.
    Janz, N., Becker, M.: The health belief model: A decade later. Health Education Querterly, 1–47 (1984)Google Scholar
  17. 17.
    Kreuter, M., Farrell, D., Olevitch, L., Brennan, L.: Tailoring Health Messages: Customizing Communication With Computer Technology. Lawrence Erlbaum Associates, Inc. (2000)Google Scholar
  18. 18.
    Maes, S., Karoly, P.: Self-regulation assessment and intervention in physical health and illness: A review. Applied Psychology 54(2), 267–299 (2005)CrossRefGoogle Scholar
  19. 19.
    Marlatt, G., Gordon, J.: Determinants of relapse: Implications for the maintenance of behavior change, pp. 410–452 (1980)Google Scholar
  20. 20.
    Michie, S., Johnston, M., Francis, J., Hardeman, W., Eccles, M.: Applied Psychology 57(4) (2008)Google Scholar
  21. 21.
    Miller, W., Rollnick, S.: Motivational Interviewing: Preparing People to Change Addictive Behaviour. Guilford Press, New York (1991)Google Scholar
  22. 22.
    Nerenz, H.L.D., Steele, D.: Ilness representation and coping with health threats. In: Baum, A., Singer, J. (eds.) A Handbook of Psychology and Health, pp. 219–252. Erlbaum Associates, Hillsdale (1984)Google Scholar
  23. 23.
    Philips: Directlife (July 2011),
  24. 24.
    Preuveneers, D., Berbers, Y.: Mobile phones assisting with health self-care: a diabetes case study. In: MobileHCI (2008)Google Scholar
  25. 25.
    Prochaska, J., DiClemente, C.: The Transtheoretical Approach: Crossing the Traditional Boundaries of change. J. Irwin, Homewood (1984)Google Scholar
  26. 26.
    Prochaska, J., Norcross, J.: Stages of change.psychotherapy: theory. Research and Practice 38(4), 443 (2001)Google Scholar
  27. 27.
    Rogers, W.A., Mynatt, E.D.: How can technology contribute to the quality of life of older adults? In: Mitchell, M.E. (ed.) The Technology of Humanity: Can Technology Contribute to the Quality of Life?, pp. 22–30. Illinois Institute of Technology, Chicago, IL (2003)Google Scholar
  28. 28.
    Shaw, J., Sicree, R., Zimmet, P.: Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Research and Clinical Practice 87(1), 4–14 (2010)CrossRefGoogle Scholar
  29. 29.
    Skinner, C., Campbell, M., Rimer, B., et al.: How effective is tailored print communication? Annual Behavioral Medicine 21, 290–298 (1999)CrossRefGoogle Scholar
  30. 30.
    SkyHealth: Glucosebuddy (July 2011),
  31. 31.
    Smith, E., Mackie, D.: Social Psychology. Psychology Press, Philadelphia (2000)Google Scholar
  32. 32.
    Sorbi, M.J., Mak, S.B., Houtveen, J.H., Kleiboer, A.M., van Doornen, L.J.: Mobile web-based monitoring and coaching: Feasibility in chronic migraine. Journal of Medical Internet Research 9(5) (2007)Google Scholar
  33. 33.
    de Vries, H., Brug, J.: Computer-tailored interventions motivating people to adopt health promoting behaviours: introduction to a new approach. Patient Educational Counseling 36, 99–105 (1999)CrossRefGoogle Scholar
  34. 34.
    de Vries, H., Mudde, A.: Predicting stage transitions for smoking cessation applying the attitude social influence efficacy model. Psychology and Health 13, 369–385 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Michel Klein
    • 1
  • Nataliya Mogles
    • 1
  • Arlette van Wissen
    • 1
  1. 1.Department of Artificial IntelligenceVU UniversityAmsterdamThe Netherlands

Personalised recommendations