Advertisement

Microclimatology

  • Thomas Foken
Chapter

Abstract

Microclimatology investigates mean states and permanent repeated phenomena on the micrometeorological scale. These are small-scale circulation systems such as mountain and valley winds, land-sea wind circulations, and katabatic winds. These phenomena are the subjects of many textbooks. Therefore, the following chapter does not provide a comprehensive overview, but rather discusses some typical microclimatological phenomena. These phenomena are present under special weather situations, and influence the small-scale climate in typical ways. Many of these local effects are described only in regional publications.

Keywords

Wind Farm Urban Heat Island Urban Climate Katabatic Wind Katabatic Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Babel W, Biermann T, Coners H, Falge E, Seeber E, Ingrisch J, Schleuß PM, Gerken T, Leonbacher J, Leipold T, Willinghöfer S, Schützenmeister K, Shibistova O, Becker L, Hafner S, Spielvogel S, Li X, Xu X, Sun Y, Zhang L, Yang Y, Ma Y, Wesche K, Graf HF, Leuschner C, Guggenberger G, Kuzyakov Y, Miehe G and Foken T (2014) Pasture degradation modifies the water and carbon cycles of the Tibetan highlands. Biogeosci. 11:6633-6656.Google Scholar
  2. Bailey WG, Oke TR and Rouse WR (eds) (1997) The Surface Climate of Canada. Mc Gill-Queen’s University Press, Montreal, Kingston, 369 pp.Google Scholar
  3. Barry R and Blanken P (2016) Microclimate and Local Climate. Cambridge University Press, Cambridge, 316 pp.Google Scholar
  4. Bendix J (2004) Geländeklimatologie. Borntraeger, Berlin, Stuttgart, 282 pp.Google Scholar
  5. Best MJ and Grimmond CSB (2014) Key conclusions of the first international urban land surface model comparison project. Bull Amer Meteorol Soc. 96:805–819.Google Scholar
  6. Böer W (1959) Zum Begriff des Lokalklimas. Z Meteorol. 13:5–11.Google Scholar
  7. Brötz B, Eigenmann R, Dörnbrack A, Foken T and Wirth V (2014) Early-morning flow transition in a valley in low-mountain terrain. Boundary-Layer Meteorol. 152:45–63.Google Scholar
  8. Cotton WR and Pielke Sr RA (2008) Human Impacts on Weather and Climate. Cambridge University Press, Cambridge, 320 pp.Google Scholar
  9. Davin EL and de Noblet-Ducoudré N (2010) Climatic impact of global-scale deforestation: Radiative versus nonradiative processes. J Climate. 23:97–112.Google Scholar
  10. Defant F (1949) Zur Theorie der Hangwinde, nebst Bemerkungen zur Theorie der Berg- und Talwinde. Archiv Meteorol Geophys Bioklim, Ser. A. 1:421–450.Google Scholar
  11. Foken T (2013) Energieaustausch an der Erdoberfläche. Edition am Gutenbergplatz, Leipzig, 99 pp.Google Scholar
  12. Gerth W-P (1986) Klimatische Wechselwirkungen in der Raumplanung bei Nutzungsänderungen. Ber Dt Wetterdienstes. 171:69 pp.Google Scholar
  13. Häckel H (1989) Das Gartenklima. Ulmer, Stuttgart, 128 pp.Google Scholar
  14. Herbst M, Mund M, Tamrakar R and Knohl A (2015) Differences in carbon uptake and water use between a managed and an unmanaged beech forest in central Germany. For Ecol Managem. 355:101–108.Google Scholar
  15. Hupfer P (1989) Klima im mesoräumigen Bereich. Abh Meteorol Dienstes DDR. 141:181–192.Google Scholar
  16. Hupfer P (ed) (1991) Das Klimasystem der Erde. Akademie-Verlag, Berlin, 464 pp.Google Scholar
  17. Hupfer P (1996) Unsere Umwelt: Das Klima. B. G. Teubner, Stuttgart, Leipzig, 335 pp.Google Scholar
  18. Hupfer P and Kuttler W (eds) (2005) Witterung und Klima, begründet von Ernst Heyer. B. G. Teubner, Stuttgart, Leipzig, 554 pp.Google Scholar
  19. King JC and Turner J (1997) Antarctic Meteorology and Climatology. Cambridge University Press, Cambridge, 409 pp.Google Scholar
  20. Klein P and Clark JV (2007) Flow variability in a North American downtown street canyon. J Appl Meteorol Climatol. 46:851–877.Google Scholar
  21. Knoch K (1949) Die Geländeklimatologie, ein wichtiger Zweig der angewandten Klimatologie. Ber Dtsch Landesk. 7:115–123.Google Scholar
  22. Kotthaus S and Grimmond CSB (2012) Identification of micro-scale anthropogenic CO2, heat and moisture sources—Processing eddy covariance fluxes for a dense urban environment. Atmos Environm. 57:301–316.Google Scholar
  23. Kratzer (1956) Das Stadtklima. Vieweg, Braunschweig, 184 pp.Google Scholar
  24. Kraus H (1983) Meso- und mikro-skalige Klimasysteme. Ann Meteorol. 20:4–7.Google Scholar
  25. Leclerc MY and Foken T (2014) Footprints in Micrometeorology and Ecology. Springer, Heidelberg, New York, Dordrecht, London, XIX, 239 pp.Google Scholar
  26. Letzel MO (2015) Urban large-eddy simulation (LES), Advanced computational fluid dynamics for urban climatic maps. In: Ng E and Ren C (eds.), The Urban Climatic Map: A Methodology for Sustainable Urban Planning. Routledge, 421–428.Google Scholar
  27. Lietzke B, Vogt R, Young DT and Grimmond CSB (2015) Physical fluxes in urban environment. In: Chrysoulakis Net al (eds.), Understanding Urban Metabolism. Routledge, Abingdon, New York, 29–44.Google Scholar
  28. Mölders N (2012) Land-Use and Land-Cover Changes, Impact on climate and air quality. Springer, Dordrecht, Heidelberg, London, New York, 189 pp.Google Scholar
  29. Nitzschke A (1970) Zum Verhalten der Lufttemperatur in der Kontaktzone zwischen Land und Meer bei Zingst. Veröff Geophys Inst Univ Leipzig. XIX:339–445.Google Scholar
  30. Oke TR (1987) Boundary Layer Climates. Methuen, New York, 435 pp.Google Scholar
  31. Orlanski I (1975) A rational subdivision of scales for atmospheric processes. Bull. Am. Meteorol. Soc. 56:527–530.Google Scholar
  32. Pielke Sr RA, Adegoke JO, Chase TN, Marshall CH, Matsui T and Niyogi D (2007) A new paradigm for assessing the role of agriculture in the climate system and in climate change. Agrical Forest Meteorol. 142:234–254.Google Scholar
  33. Spronken-Smith RA and Oke TR (1999) Scale modelling of nocturnal cooling in urban parks. Boundary-Layer Meteorol. 93:287–312.Google Scholar
  34. Spronken-Smith RA, Oke TR and Lowry WP (2000) Advection and the surface energy balance across an irrigated urban park. Int J Climatol. 20:1033–1047.Google Scholar
  35. Stull RB (1988) An Introduction to Boundary Layer Meteorology. Kluwer Acad. Publ., Dordrecht, Boston, London, 666 pp.Google Scholar
  36. Stull RB (2000) Meteorology for Scientists and Engineers. Brooks/ Cole, Pacific Grove, 502 pp.Google Scholar
  37. Tiesel R and Foken T (1987) Zur Entstehung des Seerauchs an der Ostseeküste vor Warnemünde. Z Meteorol. 37:173–176.Google Scholar
  38. VDI (2003) Umweltmeteorologie, Lokale Kaltluft, VDI 3787, Blatt 5. Beuth-Verlag, Berlin, 86 pp.Google Scholar
  39. Westermann S, Lüers J, Langer M, Piel K and Boike J (2009) The annual surface energy budget of a high-arctic permafrost site on Svalbard, Norway. The Cryosph. 3:245–263.Google Scholar
  40. Witha B, Steinfeld G, Dörenkämper M and Heinemann D (2014) Large-eddy simulation of multiple wakes in offshore wind farms. J Phys: Conf Ser. 555: 012108.Google Scholar
  41. Zeeman M, Selker J and Thomas C (2015) Near-surface motion in the nocturnal, stable boundary layer observed with fibre-optic distributed temperature sensing. Boundary-Layer Meteorol. 154:189–205.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Bayreuth Center of Ecology and Environmental Research (BayCEER)University of BayreuthBayreuthGermany
  2. 2.BischbergGermany

Personalised recommendations