Advertisement

Measurement Technique

  • Thomas Foken
Chapter

Abstract

Because meteorological measurements are primarily taken in the near-surface layer, they are carried out in the micrometeorological scale. While some textbooks about meteorological measurements are available, it can be challenging to find detailed information about micrometeorological measurement and data processing techniques. For this reason, a special chapter is dedicated to micrometeorological measurements. Unlike other books with extensive descriptions of meteorological instrumentation, only general principles of the micrometeorological measurement techniques are described. Of special importance are techniques for the optimal adaptation of the sensors to the surrounding environment—the turbulent atmosphere. The quality assurance of observations is another focal point.

Keywords

Wind Velocity Longwave Radiation Sonic Anemometer Soil Heat Flux Turbulence Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Albrecht F (1927) Thermometer zur Messung der wahren Temperatur. Meteorol Z. 24:420–424.Google Scholar
  2. Andreas EL (1989) Two-wavelength method of measuring path-averaged turbulent surface heat fluxes. J Atm Oceanic Techn. 6:280–292.Google Scholar
  3. Assmann R (1887) Das Aspirationspsychrometer, ein neuer Apparat zur Ermittlung der wahren Temperatur und Feuchtigkeit der Luft. Das Wetter. 4:245–286.Google Scholar
  4. Assmann R (1888) Das Aspirationspsychrometer, ein neuer Apparat zur Ermittlung der wahren Temperatur und Feuchtigkeit der Luft. Das Wetter. 5:1–22.Google Scholar
  5. Bartels J (1935) Zur Morphologie geophysikalischer Zeitfunktionen. Sitzungsberichte Preuß Akad Wiss. 30:504–522.Google Scholar
  6. Bentley JP (2005) Principles of Measurement Systems. Pearson Prentice Hall, Harlow 528 pp.Google Scholar
  7. Beyrich F, DeBruin HAR, Meijninger WML, Schipper JW and Lohse H (2002) Results from one-year continuous operation of a large aperture scintillometer over a heterogeneous land surface. Boundary-Layer Meteorol. 105:85–97.Google Scholar
  8. Bovscheverov VM and Voronov VP (1960) Akustitscheskii fljuger (Acoustic rotor). Izv AN SSSR, ser Geofiz. 6:882–885.Google Scholar
  9. Bowen AJ and Teunissen HW (1986) Correction factors for the directional response of Gill propeller anemometer. Boundary-Layer Meteorol. 37:407–413.Google Scholar
  10. Braud J, Noilhan P, Bessemoulin P, Mascart P, Haverkamp R and Vauclin M (1993) Bare ground surface heat and water exchanges under dry conditions. Boundary-Layer Meteorol. 66:173–200.Google Scholar
  11. Brock FV and Richardson SJ (2001) Meteorological Measurement Systems. Oxford University Press, New York, 290 pp.Google Scholar
  12. Buck AL (1973) Development of an improved Lyman-alpha hygrometer. Atm Technol. 2:213–240.Google Scholar
  13. de Vries DA (1963) Thermal Properties of Soils. In: van Wijk WR (ed.), Physics of the Plant Environment. North-Holland Publ. Co., Amsterdam, 210–235.Google Scholar
  14. DeBruin HAR (2002) Introduction: Renaissance of scintillometry. Boundary-Layer Meteorol. 105:1–4.Google Scholar
  15. DeBruin HAR, Meijninger WML, Smedman A-S and Magnusson M (2002) Displaced-beam small aperture scintillometer test. part I: The WINTEX data-set. Boundary-Layer Meteorol. 105:129–148.Google Scholar
  16. DeFelice TP (1998) An introduction to meteorological instrumentation and measurement. Prentice Hall, Upper Saddle River, 229 pp.Google Scholar
  17. DeGaetano AT (1997) A quality-control routine for hourly wind observations. J Atm Oceanic Techn. 14:308–317.Google Scholar
  18. Denmead OT (2008) Approaches to measuring fluxes of methane and nitrous oxide between landscapes and the atmosphere. Plant Soil. 309:5–24.Google Scholar
  19. DIN-EN (2009) Industrial platinum resistance thermometers and platinum temperature sensors (Industrielle Platin-Widerstandsthermometer und Platin Sensoren), IEC 60751:2008. Beuth-Verlag, Berlin, DIN-EN 60751, 28 pp.Google Scholar
  20. Doetsch G (1985) Anleitung zum praktischen Gebrauch der Laplace-Transformation und der Z-Transformation. Oldenbourg, München, Wien, 256 pp.Google Scholar
  21. Doorenbos J and Pruitt WO (1977) Guidelines for predicting crop water requirements. FAO Irrigation Drainage Pap. 24, 2nd ed.:145 pp.Google Scholar
  22. Drinkov R (1972) A solution to the paired Gill-anemometer response function. J Climate Appl Meteorol. 11:76–80.Google Scholar
  23. Dunn G (2004) Statistical Evaluation of Measurement Errors. Arnold, London, 216 pp.Google Scholar
  24. Edwards GC, Neumann HH, den Hartog G, Thurtell GW and Kidd G (1994) Eddy correlation measurements of methane fluxes using a tunable diode laser at the Kinosheo Lake tower site during the Northern Wetlands Study (NOWES). J Geophys Res. 99 D1:1511–1518.Google Scholar
  25. Elagina LG (1962) Optitscheskij pribor dlja izmerenija turbulentnych pulsacii vlaschnosti (Optical sensor for the measurement of turbulent humidity fluctuations). Izv AN SSSR, ser Geofiz. 12:1100–1107.Google Scholar
  26. Emeis S (2010) Measurement Methods in Atmospheric Sciences. Borntraeger Science Publishers, Stuttgart, 257 pp.Google Scholar
  27. Fiebrich CA and Crawford KL (2001) The impact of unique meteorological phenomena detected by the Oklahoma Mesonet and ARS Micronet on automatic quality control. Bull Amer Meteorol Soc. 82:2173–2187.Google Scholar
  28. Foken T (1979) Temperaturmessung mit dünnen Platindrähten. Z Meteorol. 29:299–307.Google Scholar
  29. Foken T, Kaiser H and Rettig W (1983) Propelleranemometer: Überblick und spezielle Entwicklungen am Meteorologischen Hauptobservatorium Potsdam. Veröff Meteorol Dienstes DDR. 24:48 pp.Google Scholar
  30. Foken T, Dlugi R and Kramm G (1995) On the determination of dry deposition and emission of gaseous compounds at the biosphere-atmosphere interface. Meteorol Z. 4:91–118.Google Scholar
  31. Foken T and Oncley SP (1995) Results of the workshop ‘Instrumental and methodical problems of land surface flux measurements’. Bull Amer Meteorol Soc. 76:1191–1193.Google Scholar
  32. Foken T and Wichura B (1996) Tools for quality assessment of surface-based flux measurements. Agrical Forest Meteorol. 78:83–105.Google Scholar
  33. Foken T, Buck AL, Nye RA and Horn RD (1998) A Lyman-alpha hygrometer with variable path length. J Atm Oceanic Techn. 15:211–214.Google Scholar
  34. Foken T and Falke H (2012) Technical note: Calibration device for the krypton hygrometer KH20. Atmos. Meas. Tech. 5:1861–1867.Google Scholar
  35. Frankenberger E (1951) Untersuchungen über den Vertikalaustausch in den unteren Dekametern der Atmosphäre. Ann Meteorol. 4:358–374.Google Scholar
  36. Fuchs M (1986) Heat flux. In: Klute A (ed.), Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods, 2nd edn., vol 9. ASA and SSSA, Madison, WI, 957–968.Google Scholar
  37. Gandin LS (1988) Complex quality control of meteorological observations. Monthly Weather Review. 116:1137–1156.Google Scholar
  38. Gilgen H, Whitlock CH, Koch F, Müller G, Ohmura A, Steiger D and Wheeler R (1994) Technical plan for BSRN data management. World Radiation Monitoring Centre (WRMC), Technical Report. 1:56 pp.Google Scholar
  39. Graf U (2004) Applied Laplace transforms and z-transforms for scientists and engineers. Birkhäuser, Basel, 500 pp.Google Scholar
  40. Halldin S and Lindroth A (1992) Errors in net radiometry, comparison and evaluation of six radiometer designs. J Atm Oceanic Techn. 9:762–783.Google Scholar
  41. Hanafusa T, Fujitana T, Kobori Y and Mitsuta Y (1982) A new type sonic anemometer-thermometer for field operation. Papers Meteorol Geophys. 33:1–19.Google Scholar
  42. Hari P, Heliövaara K and Kulmala L (eds) (2013) Physical and Physiological Forest Ecology. Springer, Dordrecht, Heidelberg, New York, London, 534 pp.Google Scholar
  43. Harrison GR (2015) Meteorological Measurements and Instrumentations. John Wiley and Sons, Chichester, 257 pp.Google Scholar
  44. Haugen DA (1978) Effects of sampling rates and averaging periods on meteorological measurements. Fourth Symp Meteorol Observ Instr, Am Meteorol Soc:15–18.Google Scholar
  45. Hayden KL, Anlauf KG, Hoff RM, Strapp JW, Bottenheim JW, Wiebe HA, Froude FA, Martin JB, Steyn DG and McKendry IG (1997) The vertical chemical and meteorological structure of the boundary layer in the Lower Fraser Valley during Pacific ‘93. Atmos Environm. 31:2089–2105.Google Scholar
  46. Hebra AJ (2010) The Physics of Metrology. Springer, Wien, New York 383 pp.Google Scholar
  47. Helmis CG, Sgouros G, Tombrou M, Schäfer K, Münkel C, Bossioli E and Dandou A (2012) A comparative study and evaluation of mixing-height estimation based on sodar-RASS, ceilometer data and numerical model simulations. Boundary-Layer Meteorol. 145:507–526.Google Scholar
  48. Hill MK and Clifford SF (1978) Modified spectrum of atmospheric temperature fluctuations and its application to optical propagation. J Opt Soc Am. 68:892–899.Google Scholar
  49. Hill R (1997) Algorithms for obtaining atmospheric surface-layer from scintillation measurements. J Atm Oceanic Techn. 14:456–467.Google Scholar
  50. Hill RJ, Clifford SF and Lawrence RS (1980) Refractive index and absorption fluctuations in the infrared caused by temperature, humidity and pressure fluctuations. J Opt Soc Am. 70:1192–1205.Google Scholar
  51. Horton R, Wieringa PJ and Nielsen DR (1983) Evaluation of methods for determining the apparent thermal diffusivity of soil near the surface. Soil Sci Soc Am J. 47:25–32.Google Scholar
  52. Hübner J, Olesch J, Falke H, Meixner FX and Foken T (2014) A horizontal mobile measuring system for atmospheric quantities. Atmos Meas Techn. 7:2967–2980.Google Scholar
  53. Huete A, Didan K, Miura T, Rodriguez EP, Gao X and Ferreira LG (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Rem Sens Environm. 83:195–213.Google Scholar
  54. Hupfer P and Kuttler W (eds) (2006) Witterung und Klima, begründet von Ernst Heyer. B. G. Teubner, Stuttgart, Leipzig, 554 pp.Google Scholar
  55. ISO (1990) Solar energy - Specification and classification of instruments for measuring hemispherical solar and direct solar radiation, ISO 9060. Beuth-Verlag, Berlin, 21 pp.Google Scholar
  56. ISO (1996) Acoustics - Attenuation of sound during propagation outdoors - Part 2: General method of calculation, ISO 9613–2. Beuth-Verlag, Berlin, 26 pp.Google Scholar
  57. ISO (2002) Meteorology -Sonic anemometer/thermometer - Acceptance test method for mean wind measurements, ISO 16622. Beuth-Verlag, Berlin, 21 pp.Google Scholar
  58. ISO (2007) Meteorology - Wind measurements - Part 1: Wind tunnel test methods for rotating anemometer performance. ISO 17713–1. Beuth-Verlag, Berlin, 17 pp.Google Scholar
  59. Jacobs AFG and McNaughton KG (1994) The excess temperature of a rigid fast-response thermometer and its effects on measured heat fluxes. J Atm Oceanic Techn. 11:680–686.Google Scholar
  60. Junghans (1967) Der Einfluß es Windes auf das Niederschlagsdargebot von Hängen. Archiv Forstw. 16:579–585.Google Scholar
  61. Kaimal JC and Businger JA (1963) A continuous wave sonic anemometer-thermometer. J Climate Appl Meteorol. 2:156–164.Google Scholar
  62. Kaimal JC and Gaynor JE (1991) Another look to sonic thermometry. Boundary-Layer Meteorol. 56:401–410.Google Scholar
  63. Kaimal JC and Finnigan JJ (1994) Atmospheric Boundary Layer Flows: Their Structure and Measurement. Oxford University Press, New York, NY, 289 pp.Google Scholar
  64. Kallistratova MA (1959) Eksperimentalnoje issledovanie rassejenija zvuka v turbulentnoj atmosfere (An experimental investigation in the scattering of sound in the turbulent atmosphere). Dokl AN SSSR. 125:69–72.Google Scholar
  65. Kasten F (1985) Maintenance, calibration and comparison. Instrum Obs Methods Rep. 23 (WMO/TD 51):65–84.Google Scholar
  66. Kleinschmidt E (ed) (1935) Handbuch der meteorologischen Instrumente und ihrer Auswertung. Springer, Berlin, 733 pp.Google Scholar
  67. Kretschmer SI (1954) Metodika izmerenija mikropulsacii skorosti vetra i temperatura v atmosfere (A method to measure the fluctuations of the wind velocity and the temperature). Trudy geofiz inst AN SSSR. 24 (151):43–111.Google Scholar
  68. Kretschmer SI and Karpovitsch JV (1973) Maloinercionnyj ultrafioletovyj vlagometer (Sensitive ultraviolet hygrometer). Izv AN SSSR, Fiz Atm Okeana. 9:642–645.Google Scholar
  69. Kristensen L (1998) Cup anemometer behavior in turbulent environments. J Atm Oceanic Techn. 15:5–17.Google Scholar
  70. Lai DYF, Roulet NT, Humphreys ER, Moore TR and Dalva M (2012) The effect of atmospheric turbulence and chamber deployment period on autochamber CO2 and CH4 flux measurements in an ombrotrophic peatland. Biogeosci. 9:3305–3322.Google Scholar
  71. Latimer JR (1972) Radiation measurement, International Field Year of the Great Lakes, Techn. Manual Series No. 2, Information. Ottawa, 53 pp.Google Scholar
  72. Leuning R and Judd MJ (1996) The relative merits of open- and closed path analysers for measurements of eddy fluxes. Global Change Biology. 2:241–254.Google Scholar
  73. Liebethal C, Huwe B and Foken T (2005) Sensitivity analysis for two ground heat flux calculation approaches. Agrical Forest Meteorol. 132:253–262.Google Scholar
  74. Liebethal C and Foken T (2006) On the use of two repeatedly heated sensors in the determination of physical soil parameters. Meteorol Z. 15:293–299.Google Scholar
  75. Liebethal C and Foken T (2007) Evaluation of six parameterization approaches for the ground heat flux. Theor Appl Climat. 88:43–56.Google Scholar
  76. Linacre ET (1994) Estimating U.S. Class-A pan evaporation from climate data. Water Internat. 19:5–14.Google Scholar
  77. Martini L, Stark B and Hunsalz G (1973) Elektronisches Lyman-Alpha-Feuchtigkeitsmessgerät. Z Meteorol. 23:313–322.Google Scholar
  78. Mauder M, Liebethal C, Göckede M, Leps J-P, Beyrich F and Foken T (2006) Processing and quality control of flux data during LITFASS-2003. Boundary-Layer Meteorol. 121:67–88.Google Scholar
  79. Mayer J-C, Hens K, Rummel U, Meixner FX and Foken T (2009) Moving measurement platforms—specific challenges and corrections. Meteorol Z. 18:477–488.Google Scholar
  80. McAllister LG, Pollard JR, Mahoney AR and Shaw PJR (1969) Acoustic sounding - A new approach to the study of atmospheric structure. Proc IEEE. 57:579–587.Google Scholar
  81. Meijninger WML, Green AE, Hartogensis OK, Kohsiek W, Hoedjes JCB, Zuurbier RM and DeBruin HAR (2002) Determination of area-averaged water vapour fluxes with large aperture and radio wave scintillometers over a heterogeneous surface - Flevoland Field Experiment. Boundary-Layer Meteorol. 105:63–83.Google Scholar
  82. Meijninger WML, Lüdi A, Beyrich F, Kohsiek W and DeBruin HAR (2006) Scintillometer-based turbulent surface fluxes of sensible and latent heat over heterogeneous a land surface - A contribution to LITFASS-2003. Boundary-Layer Meteorol. 121:89–110.Google Scholar
  83. Mitsuta Y (1966) Sonic anemometer-thermometer for general use. J Meteor Soc Japan. Ser. II, 44:12–24.Google Scholar
  84. Moene AF and van Dam JC (2014) Transport in the Atmosphere-Vegetation-Soil Continuum. Cambridge University Press, Cambridge, 436 pp.Google Scholar
  85. Moncrieff JB, Massheder JM, DeBruin H, Elbers J, Friborg T, Heusinkveld B, Kabat P, Scott S, Søgaard H and Verhoef A (1997) A system to measure surface fluxes of momentum, sensible heat, water vapor and carbon dioxide. J Hydrol. 188–189:589-611.Google Scholar
  86. Monson R and Baldocchi D (2014) Terrestrial Biosphere-Atmosphere Fluxes. Cambridge University Press, New York, XXI, 487 pp.Google Scholar
  87. Monteith JL and Unsworth MH (2008) Principles of Environmental Physics, 3rd edition. Elsevier, Academic Press, Amsterdam, Boston, 418 pp.Google Scholar
  88. Moore CJ (1986) Frequency response corrections for eddy correlation systems. Boundary-Layer Meteorol. 37:17–35.Google Scholar
  89. Münkel C, Eresmaa N, Räsänen J and Karppinen A (2007) Retrieval of mixing height and dust concentration with lidar ceilometer. Boundary-Layer Meteorol. 124:117–128.Google Scholar
  90. Neff WD and Coulter RL (1986) Acoustic remote sounding. In: Lenschow DH (ed.), Probing the Atmospheric Boundary Layer. American Meteorological Society, Boston, 201–236.Google Scholar
  91. Ohmura A, Dutton EG, Forgan B, Fröhlich C, Gilgen H, Hegner H, Heimo A, König-Langlo G, McArthur B, Müller G, Philipona R, Pinker R, Whitlock CH, Dehne K and Wild M (1998) Baseline Surface Radiation Network (BSRN/WCRP): New precision radiometry for climate research. Bull Amer Meteorol Soc. 79:2115–2136.Google Scholar
  92. Orlanski I (1975) A rational subdivision of scales for atmospheric processes. Bull. Am. Meteorol. Soc. 56:527–530.Google Scholar
  93. Pattey E, Strachan IB, Desjardins RL, Edwards GC, Dow D and MacPherson IJ (2006) Application of a tunable diode laser to the measurement of CH4 and N2O fluxes from field to landscape scale using several micrometeorological techniques. Agrical Forest Meteorol. 136:222–236.Google Scholar
  94. Philip JR (1961) The theory of heat flux meters. J Geophys Res. 66:571–579.Google Scholar
  95. Philipona R, Fröhlich C and Betz C (1995) Characterization of pyrgeometers and the accuracy of atmospheric long-wave radiation measurements. Applied Optics. 34:1598–1605.Google Scholar
  96. Philipona R, Dutton EG, Stoffel T, Michalsky J, Reda I, Stifter A, Wendung P, Wood N, Clough SA, Mlawer EJ, Anderson G, Revercomb HE and Shippert TR (2001) Atmospheric longwave irradiance uncertainty: Pyrgeometers compared to an absolute sky-scanning radiometer, atmospheric emitted radiance interferometer, and radiative transfer model calculations. J Geophys Res: Atmosph. 106:28129–28141.Google Scholar
  97. Pihlatie MK, Christiansen JR, Aaltonen H, Korhonen JFJ, Nordbo A, Rasilo T, Benanti G, Giebels M, Helmy M, Sheehy J, Jones S, Juszczak R, Klefoth R, Lobo-do-Vale R, Rosa AP, Schreiber P, Serça D, Vicca S, Wolf B and Pumpanen J (2013) Comparison of static chambers to measure CH4 emissions from soils. Agrical Forest Meteorol. 171–172:124–136.Google Scholar
  98. Profos P and Pfeifer T (eds) (1997) Grundlagen der Meßtechnik. Oldenbourg, München, Wien, XIII, 367 pp.Google Scholar
  99. Pumpanen J, Kolari P, Ilvesniemi H, Minkkinen K, Vesala T, Niinistö S, Lohila A, Larmola T, Morero M, Pihlatie M, Janssens I, Yuste JC, Grünzweig JM, Reth S, Subke J-A, Savage K, Kutsch W, Østreng G, Ziegler W, Anthoni P, Lindroth A and Hari P (2004) Comparison of different chamber techniques for measuring soil CO2 efflux. Agrical Forest Meteorol. 123:159–176.Google Scholar
  100. Richardson SJ, Brock FV, Semmer SR and Jirak C (1999) Minimizing errors associated with multiplate radiation shields. J Atm Oceanic Techn. 16:1862–1872.Google Scholar
  101. Richter D (1995) Ergebnisse methodischer Untersuchungen zur Korrektur des systematischen Meßfehlers des Hellmann-Niederschlagsmessers. Ber. d. Dt. Wetterdienstes. 194:93 pp.Google Scholar
  102. Riederer M, Serafimovich A and Foken T (2014) Eddy covariance—chamber flux differences and its dependence on atmospheric conditions. Atmospheric Measurement Techniques. 7:1057–1064.Google Scholar
  103. Rink J (1961) Thermistore und ihre Anwendung in der Meteorologie. Abh Meteorol Hydrol Dienstes DDR. 63:58 pp.Google Scholar
  104. Rochette P, Ellert B, Gregorich EG, Desjardins RL, Pattey E, Lessard R and Johnson BG (1997) Description of a dynamic closed chamber for measuring soil respiration and its comparison with other techniques. Can J Soil Sci. 77:195–203.Google Scholar
  105. Rochette P and Hutchinson GL (2005) Measurement ofsoil respiration in situ: Chamber techniques. In: Hatfield JL and Baker I (eds.), Micrometeorology in Agricultural Systems, vol 47. American Society of Agronomy, Madison, 247–286.Google Scholar
  106. Sauer TJ, Harris AR, Ochsner TE and Horton R (2002) Errors in soil heat flux measurement: Effects of flux plate design and varying soil thermal properties. 25th Symp Agric & Forest Meteor:11–12.Google Scholar
  107. Schönwiese C-D (2013) Praktische Statistik für Meteorologen und Geowissenschaftler. Borntraeger, Stuttgart, 319 pp.Google Scholar
  108. Schrüfer E, Reindl L and Zagar B (2014) Elektrische Messtechnik. Fachbuchverlag im Carl Hanser Verlag, Leipzig, München, 445 pp.Google Scholar
  109. Sentelhas PC and Folegatti MV (2003) Class A pan coefficients (Kp) to estimate daily reference evapotranspiration (ETo). Revista Brasilleira de Engenharia Agricola e Ambiental. 7:111–115.Google Scholar
  110. Sevruk B (1981) Methodische Untersuchungen des systematischen Messfehlers der Hellmann-Regenmesser im Sommerhalbjahr in der Schweiz. Mitt. d. Versuchsanstalt f. Wasserb., Hydrol. u. Glaziol. 52:290 pp.Google Scholar
  111. Shearman RJ (1992) Quality assurance in the observation area of the Meteorological Office. Meteorol Mag. 121:212–216.Google Scholar
  112. Smajstrla AG, Zazueta FS, Clark GA and Pitts DJ (2000) Irrigation scheduling with evaporation pans. Univ of Florida, IFAS Ext Bul 254,9 pp.Google Scholar
  113. Smith SR, Camp JP and Legler DM (1996) Handbook of Quality Control, Procedures and Methods for Surface Meteorology Data. Center for Ocean Atmospheric Prediction Studies, TOGA/COARE, Technical Report. 96–3:60 pp. [Available from Florida State University, Tallahassee, FL, 32306-33041].Google Scholar
  114. Song C, Woodcock CE, Seto KC, Lenney MP and MacOmber SA (2001) Classification and change detection using Landsat TM data: when and how to correct atmospheric effects? Rem Sens Environm. 75:230–244.Google Scholar
  115. Sonntag D (1966–1968) Hygrometrie. Akademie-Verlag, Berlin, 1086 pp.Google Scholar
  116. Sonntag D, Scholz K and Schulze K (1989) The psychrometer equation for Assmann aspiration psychrometer for use in meteorological practice. Instrum Obs Methods Rep. 35 (WMO/TD No. 303):175–180.Google Scholar
  117. Sonntag D (1994) Advancements in the field of hygrometry. Meteorol Z. 3:51–66.Google Scholar
  118. Sturm P, Eugster W and Knohl A (2012) Eddy covariance measurements of CO2 isotopologues with a quantum cascade laser absorption spectrometer. Agrical Forest Meteorol. 152:73–82.Google Scholar
  119. Tatarski VI (1961) Wave Propagation in a Turbulent Medium. McGraw-Hill, New York, 285 pp.Google Scholar
  120. Taubenheim J (1969) Statistische Auswertung geophysikalischer und meteorologischer Daten. Geest & Portig, Leipzig, 386 pp.Google Scholar
  121. Thiermann V and Grassl H (1992) The measurement of turbulent surface layer fluxes by use of bichromatic scintillation. Boundary-Layer Meteorol. 58:367–391.Google Scholar
  122. Tsvang LR (1960) Izmerenija tschastotnych spektrov temperaturnych pulsacij v prizemnom sloe atmosfery (Measurement of the spectra of the temperature fluctuations in the near surface layer of the atmosphere). Izv AN SSSR, ser Geofiz. 10:1252–1262.Google Scholar
  123. van der Hegge Zijnen BG (1956) Modified correlation formulae for heat transfer by natural and by forced convection from horizontal cylinders. Appl Sci Res. A6:129–140.Google Scholar
  124. van Loon WKP, Bastings HMH and Moors EJ (1998) Calibration of soil heat flux sensors. Agrical Forest Meteorol. 92:1–8.Google Scholar
  125. VDI (2000) Umweltmeteorologie, Meteorologische Messungen für Fragen der Luftreinhaltung - Wind, VDI 3786 Blatt2. Beuth-Verlag, Berlin, VDI 3786, Blatt 2, 33 pp.Google Scholar
  126. VDI (2006) Umweltmeteorologie - Meteorologische Messungen - Messstation, VDI 3786, Blatt 13. Beuth-Verlag, Berlin, 44 pp.Google Scholar
  127. VDI (2013) Umweltmeteorologie - Meteorologische Messungen - Grundlagen (Environmental meteorology - Meteorological measurements - Basics), VDI 3786, Blatt 1. Beuth-Verlag, Berlin, 43 pp.Google Scholar
  128. von Driest ER (1959) Convective heat transfer in gases. In: Lin CC (ed.), High speed aerodynamics and jet propulsion, Vol. V, Turbulent flow and heat transfer. Princeton University Press, Princeton, 339–427.Google Scholar
  129. Vuerich E, Monesi C, Lanza LG, Stagi L and Lanzinger E (2009) WMO field intercomparison of rainfall intensity gauches. Instrum Obs Methods Rep. 99:1–290.Google Scholar
  130. Wang K, Liu C, Zheng X, Pihlatie M, Li B, Haapanala S, Vesala T, Liu H, Wang Y, Liu G and Hu F (2013) Comparison between eddy covariance and automatic chamber techniques for measuring net ecosystem exchange of carbon dioxide in cotton and wheat fields. Biogeosci. 10:6865–6877.Google Scholar
  131. Weitkamp C (2005) Lidar, Range-Resolved Optical Remote Sensing of the Atmosphere. Springer, New York, 456 pp.Google Scholar
  132. Werle P, D’Amato F and Viciani S (2008) Tunable diode-laser spectroscopy: principles, performance, perspectives. In: Lackner M (ed.), Lasers in Chemistry - Probing Matter. Wiley-VCH, Weinheim, 255–275.Google Scholar
  133. WMO (2008) Guide to meteorological instruments and methods of observation (updated 2010, 2012). WMO, Note. 8:7th edition.Google Scholar
  134. Wyngaard JC and Clifford SF (1978) Estimating Momentum, Heat and Moisture Fluxes from Structure Parameters. J Atmos Sci. 35:1204–1211.Google Scholar
  135. Xu L, Furtaw MD, Madsen RA, Garcia RL, Anderson DJ and McDermitt DK (2006) On maintaining pressure equilibrium between a soil CO2 flux chamber and the ambient air. J Geophys Res: Atmosph. 111:D08S10.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Bayreuth Center of Ecology and Environmental Research (BayCEER)University of BayreuthBayreuthGermany
  2. 2.BischbergGermany

Personalised recommendations