Advertisement

General Basics

  • Thomas Foken
Chapter

Abstract

This introductory chapter provides the basics for this book, and terms such as micrometeorology, atmospheric boundary layer, and meteorological scales are defined and presented in relation to the subject matter of this book. Besides an historical outline, the energy and water balance equations at the Earth’s surface and the transport processes are discussed. The first chapter of the book focus on the micrometeorological basics, which are then expanded in the following theoretical and experimental chapters.

Keywords

Heat Flux Atmospheric Boundary Layer Latent Heat Flux Turbulent Flux Soil Heat Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Albrecht F (1940) Untersuchungen über den Wärmehaushalt der Erdoberfläche in verschiedenen Klimagebieten. Reichsamt Wetterdienst, Wiss Abh. Bd. VIII, Nr. 2:1–82.Google Scholar
  2. André J-C, Bougeault P and Goutorbe J-P (1990) Regional estimates of heat and evaporation fluxes over non-homogeneous terrain, Examples from the HAPEX-MOBILHY programme. Boundary-Layer Meteorol. 50:77–108.Google Scholar
  3. Arya SP (2001) Introduction to Micrometeorology. Academic Press, San Diego, 415 pp.Google Scholar
  4. Barkov E (1914) Vorläufiger Bericht über die meteorologischen Beobachtungen der Deutschen Antarktisexpedition 1911–1912. Meteorol Z. 49:120–126.Google Scholar
  5. Barrett EW and Suomi VE (1949) Preliminary report on temperature measurement by sonic means. J Meteorol. 6:273–276.Google Scholar
  6. Baumgartner A and Reichel E (1975) The World Water Balance. Elsevier, Amsterdam, New York, 179 pp.Google Scholar
  7. Beniston M (1998) From Turbulence to Climate. Springer, Berlin, Heidelberg, 328 pp.Google Scholar
  8. Beyrich F and Mengelkamp H-T (2006) Evaporation over a heterogeneous land surface: EVA_GRIPS and the LITFASS-2003 experiment - an overview. Boundary-Layer Meteorol. 121:5–32.Google Scholar
  9. Bird RB, Stewart WE and Lightfoot EN (2007) Transport Phenomena. John Wiley & Sons, Inc., New York, 905 pp.Google Scholar
  10. Blackadar AK (1976) Modeling the nocturnal boundary layer. 4th Symposium on Atmospheric Turbulence, Diffusion and Air Pollution, Raylaigh, NC, Oct. 19–22, 1976. Am. Meteorol. Soc., pp. 46-49.Google Scholar
  11. Blöschl G and Sivapalan M (1995) Scale issues in hydrological modelling - a review. Hydrol Processes. 9:251–290.Google Scholar
  12. Bovscheverov VM and Voronov VP (1960) Akustitscheskii fljuger (Acoustic rotor). Izv AN SSSR, ser Geofiz. 6:882–885.Google Scholar
  13. Bradley EF (1968) A shearing stress meter for micrometeorological studies. Quart J Roy Meteorol Soc. 94:380–387.Google Scholar
  14. Brutsaert W (2005) Hydrology. Cambridge University Press, Cambridge, XII, 605 pp.Google Scholar
  15. Budyko MI (1974) Climate and Life. Academic Press, New York, 508 pp.Google Scholar
  16. Burridge DM and Gadd AJ (1977) The Meteorological Office operational 10-level numerical weather prediction model (December 1975). Meteorological Office Technical Notes. 34:39 pp.Google Scholar
  17. Businger JA and Yaglom AM (1971) Introduction to Obukhov’s paper “Turbulence in an atmosphere with a non-uniform temperature”. Boundary-Layer Meteorol. 2:3–6.Google Scholar
  18. Businger JA, Wyngaard JC, Izumi Y and Bradley EF (1971) Flux-profile relationships in the atmospheric surface layer. J Atmos Sci. 28:181–189.Google Scholar
  19. Davidson PA, Kaneda Y, Moffatt K and Sreenivasan KR (eds) (2011) A Voyage through Turbulence. Cambridge University Press, Cambridge, 434 pp.Google Scholar
  20. Dutton JA (2002) The Ceaseless Wind: An Introduction to the Theory of Atmospheric Motion. Dover Publications, Mineola, NY, 640 pp.Google Scholar
  21. Dyer AJ, Hicks BB and King KM (1967) The Fluxatron - A revised approach to the measurement of eddy fluxes in the lower atmosphere. Journal Applied Meteorology. 6:408–413.Google Scholar
  22. Dyer AJ, Garratt JR, Francey RJ, McIlroy IC, Bacon NE, Hyson P, Bradley EF, Denmead DT, Tsvang LR, Volkov JA, Kaprov BM, Elagina LG, Sahashi K, Monji N, Hanafusa T, Tsukamoto O, Frenzen P, Hicks BB, Wesely M, Miyake M and Shaw WJ (1982) An international turbulence comparison experiment (ITCE 1976). Boundary-Layer Meteorol. 24:181–209.Google Scholar
  23. Etling D (2008) Theoretische Meteorologie. Springer, Berlin, Heidelberg, 376 pp.Google Scholar
  24. Foken T, Kitajgorodskij SA and Kuznecov OA (1978) On the dynamics of the molecular temperature boundary layer above the sea. Boundary-Layer Meteorol. 15:289–300.Google Scholar
  25. Foken T, Wichura B, Klemm O, Gerchau J, Winterhalter M and Weidinger T (2001) Micrometeorological conditions during the total solar eclipse of August 11,1999. Meteorol Z. 10:171–178.Google Scholar
  26. Foken T (2006) 50 years of the Monin-Obukhov similarity theory. Boundary-Layer Meteorol. 119:431–447.Google Scholar
  27. Foken T, Meixner FX, Falge E, Zetzsch C, Serafimovich A, Bargsten A, Behrendt T, Biermann T, Breuninger C, Dix S, Gerken T, Hunner M, Lehmann-Pape L, Hens K, Jocher G, Kesselmeier J, Lüers J, Mayer JC, Moravek A, Plake D, Riederer M, Rütz F, Scheibe M, Siebicke L, Sörgel M, Staudt K, Trebs I, Tsokankunku A, Welling M, Wolff V and Zhu Z (2012) Coupling processes and exchange of energy and reactive and non-reactive trace gases at a forest site – results of the EGER experiment. Atmos Chem Phys. 12:1923–1950.Google Scholar
  28. Foken T (2013) Energieaustausch an der Erdoberfläche. Edition am Gutenbergplatz, Leipzig, 99 pp.Google Scholar
  29. Frisch U (1995) Turbulence. Cambridge Univ. Press, Cambridge, 296 pp.Google Scholar
  30. Garratt JR (1978) Flux profile relations above tall vegetation. Quart J Roy Meteorol Soc. 104:199–211.Google Scholar
  31. Garratt JR and Hicks BB (1990) Micrometeorological and PBL experiments in Australia. Boundary-Layer Meteorol. 50:11–32.Google Scholar
  32. Garratt JR (1992) The Atmospheric Boundary Layer. Cambridge University Press, Cambridge, 316 pp.Google Scholar
  33. Geiger R (1927) Das Klima der bodennahen Luftschicht. Friedr. Vieweg & Sohn, Braunschweig, 246 pp.Google Scholar
  34. Geiger R, Aron RH and Todhunter P (2009) The Climate near the Ground. Rowman & Littlefield, Lanham, XVIII, 623 pp.Google Scholar
  35. Geiger R (2013) Das Klima der bodennahen Luftschicht. Springer Vieweg, Wiesbaden, 646 pp.Google Scholar
  36. Glickman TS (ed) (2000) Glossary of Meteorology. Am. Meteorol. Soc., Boston, MA, 855 pp.Google Scholar
  37. Hanafusa T, Fujitana T, Kobori Y and Mitsuta Y (1982) A new type sonic anemometer-thermometer for field operation. Papers Meteorol Geophys. 33:1–19.Google Scholar
  38. Hann JF and Süring R (1939) Lehrbuch der Meteorologie. Verlag von Willibald Keller, Leipzig, 480 pp.Google Scholar
  39. Hartmann DL (1994) Global Physical Climatology. Academic Press, San Diego, New York, 408 pp.Google Scholar
  40. Haugen DA (ed) (1973) Workshop on Micrometeorology. Am. Meteorol. Soc., Boston, 392 pp.Google Scholar
  41. Henderson-Sellers A and Robinson PJ (1986) Contemporary Climatology. John Wiley & Sons, Inc., New York, 439 pp.Google Scholar
  42. Högström U (1988) Non-dimensional wind and temperature profiles in the atmospheric surface layer: A re-evaluation. Boundary-Layer Meteorol. 42:55–78.Google Scholar
  43. Högström U (1990) Analysis of turbulence structure in the surface layer with a modified similarity formulation for near neutral conditions. J Atmos Sci. 47:1949–1972.Google Scholar
  44. Houghton DD (1985) Handbook of applied meteorology. Wiley, New York, XV, 1461 pp.Google Scholar
  45. Houghton JT (2015) Global Warming, The complete Briefing. Cambridge University Press, Cambridge, 396 pp.Google Scholar
  46. Hupfer P and Kuttler W (eds) (2005) Witterung und Klima, begründet von Ernst Heyer. B.G. Teubner, Stuttgart, Leipzig, 554 pp.Google Scholar
  47. Izumi Y (1971) Kansas 1968 field program data report. Air Force Cambridge Research Laboratory, Bedford, MA, 79 pp.Google Scholar
  48. Jiang B, Zhang Y, Liang S, Wohlfahrt G, Arain A, Cescatti A, Georgiadis T, Jia K, Kiely G, Lund M, Montagnani L, Magliulo V, Ortiz PS, Oechel W, Vaccari FP, Yao Y and Zhang X (2015) Empirical estimation of daytime net radiation from shortwave radiation and ancillary information. Agrical Forest Meteorol. 211–212:23–36.Google Scholar
  49. Kaimal JC and Businger JA (1963) A continuous wave sonic anemometer-thermometer. J Climate Appl Meteorol 2:156–164.Google Scholar
  50. Kaimal JC and Wyngaard JC (1990) The Kansas and Minnesota experiments. Boundary-Layer Meteorol. 50:31–47.Google Scholar
  51. Kiehl J and Trenberth KE (1997) Earth annual global mean energy budget. Bull Amer Meteorol Soc. 78:197–208.Google Scholar
  52. Kleinschmidt E (ed) (1935) Handbuch der meteorologischen Instrumente und ihrer Auswertung. Springer, Berlin, 733 pp.Google Scholar
  53. Kolmogorov AN (1941a) Lokalnaja struktura turbulentnosti v neschtschimaemoi schidkosti pri otschen bolschich tschislach Reynoldsa (The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers). Dokl AN SSSR. 30:299–303.Google Scholar
  54. Kolmogorov AN (1941b) Rassejanie energii pri lokolno-isotropoi turbulentnosti (Dissipation of energy in locally isotropic turbulence). Dokl AN SSSR. 32:22–24.Google Scholar
  55. Kopp G and Lean JL (2011) A new, lower value of total solar irradiance: Evidence and climate significance. Geophys Res Letters. 38:L01706.Google Scholar
  56. Korzun VI (ed) (1978) World Water Balance and Water Resources of the Earth. UNESCO, Paris, 663 pp.Google Scholar
  57. Kraus H (2004) Die Atmosphäre der Erde. Springer, Berlin, Heidelberg, 422 pp.Google Scholar
  58. Kraus H (2008) Grundlagen der Grenzschichtmeteorologie. Springer, Berlin, Heidelberg, 211 pp.Google Scholar
  59. Lehmann A and Kalb M (1993) 100 Jahre meteorologische Beobachtungen an der Säkularstation Potsdam 1893–1992. Deutscher Wetterdienst, Offenbach, 32 pp.Google Scholar
  60. Lettau H (1939) Atmosphärische Turbulenz. Akad. Verlagsges., Leipzig, 283 pp.Google Scholar
  61. Lettau H (1949) Isotropic and non-isitropic turbulence in the atmospheric surface layer. Geophys Res Pap. 1:86 pp.Google Scholar
  62. Lettau HH and Davidson B (eds) (1957) Exploring the Atmosphere’s First Mile. Pergamon Press, London, New York, 376 pp.Google Scholar
  63. Liebethal C, Huwe B and Foken T (2005) Sensitivity analysis for two ground heat flux calculation approaches. Agrical Forest Meteorol. 132:253–262.Google Scholar
  64. Liebethal C and Foken T (2007) Evaluation of six parameterization approaches for the ground heat flux. Theor Appl Climat. 88:43–56.Google Scholar
  65. Liou KN (1992) Radiation and Cloud Processes in the Atmosphere. Oxford University Press, Oxford, 487 pp.Google Scholar
  66. Lothon M, Lohou F, Pino D, Couvreux F, Pardyjak ER, Reuder J, Vilà-Guerau de Arellano J, Durand P, Hartogensis O, Legain D, Augustin P, Gioli B, Lenschow DH, Faloona I, Yagüe C, Alexander DC, Angevine WM, Bargain E, Barrié J, Bazile E, Bezombes Y, Blay-Carreras E, van de Boer A, Boichard JL, Bourdon A, Butet A, Campistron B, de Coster O, Cuxart J, Dabas A, Darbieu C, Deboudt K, Delbarre H, Derrien S, Flament P, Fourmentin M, Garai A, Gibert F, Graf A, Groebner J, Guichard F, Jiménez MA, Jonassen M, van den Kroonenberg A, Magliulo V, Martin S, Martinez D, Mastrorillo L, Moene AF, Molinos F, Moulin E, Pietersen HP, Piguet B, Pique E, Román-Cascón C, Rufin-Soler C, Saïd F, Sastre-Marugán M, Seity Y, Steeneveld GJ, Toscano P, Traullé O, Tzanos D, Wacker S, Wildmann N and Zaldei A (2014) The BLLAST field experiment: Boundary-Layer Late Afternoon and Sunset Turbulence. Atmos Chem Phys. 14:10931–10960.Google Scholar
  67. Lumley JL and Yaglom AM (2001) A century of turbulence. Flow, Turbulence and Combustion. 66:241–286.Google Scholar
  68. Mitsuta Y (1966) Sonic anemometer-thermometer for general use. J Meteor Soc Japan. Ser. II, 44:12–24.Google Scholar
  69. Miyake M, Stewart RW, Burling RW, Tsvang LR, Kaprov BM and Kuznecov OA (1971) Comparison of acoustic instruments in an atmospheric flow over water. Boundary-Layer Meteorol. 2:228–245.Google Scholar
  70. Monin AS and Obukhov AM (1954) Osnovnye zakonomernosti turbulentnogo peremesivanija v prizemnom sloe atmosfery (Basic laws of turbulent mixing in the atmosphere near the ground). Trudy geofiz inst AN SSSR. 24 (151):163–187.Google Scholar
  71. Monin AS and Yaglom AM (1973) Statistical Fluid Mechanics: Mechanics of Turbulence, Volume 1. MIT Press, Cambridge, London, 769 pp.Google Scholar
  72. Monin AS and Yaglom AM (1975) Statistical Fluid Mechanics: Mechanics of Turbulence, Volume 2. MIT Press, Cambridge, London, 874 pp.Google Scholar
  73. Montgomery RB (1948) Vertical eddy flux of heat in the atmosphere. Journal Meteorology. 5:265–274.Google Scholar
  74. Obukhov AM (1946) Turbulentnost’ v temperaturnoj - neodnorodnoj atmosfere (Turbulence in an atmosphere with a non-uniform temperature). Trudy Inst Theor Geofiz AN SSSR 1:95–115.Google Scholar
  75. Obukhov AM (1951) Charakteristiki mikrostruktury vetra v prizemnom sloje atmosfery (Characteristics of the micro-structure of the wind in the surface layer of the atmosphere). Izv AN SSSR, ser Geofiz. 3:49–68.Google Scholar
  76. Obukhov AM (1960) O strukture temperaturnogo polja i polja skorostej v uslovijach konvekcii (Structure of the temperature and velocity fields under conditions of free convection). Izv AN SSSR, ser Geofiz. 9:1392–1396.Google Scholar
  77. Obukhov AM (1971) Turbulence in an atmosphere with a non-uniform temperature. Boundary-Layer Meteorol. 2:7–29.Google Scholar
  78. Oertel H (ed) (2004) Prandtl’s essentials of fluid mechanics. Springer, New York, VII, 723 pp.Google Scholar
  79. Oke TR (1987) Boundary Layer Climates. Methuen, New York, 435 pp.Google Scholar
  80. Oncley SP, Foken T, Vogt R, Kohsiek W, DeBruin HAR, Bernhofer C, Christen A, van Gorsel E, Grantz D, Feigenwinter C, Lehner I, Liebethal C, Liu H, Mauder M, Pitacco A, Ribeiro L and Weidinger T (2007) The energy balance experiment EBEX-2000, Part I: Overview and energy balance. Boundary-Layer Meteorol. 123:1–28.Google Scholar
  81. Orlanski I (1975) A rational subdivision of scales for atmospheric processes. Bull. Am. Meteorol. Soc. 56:527–530.Google Scholar
  82. Persson POG, Fairall CW, Andreas EL, Guest PS and Perovich DK (2002) Measurements near the atmospheric surface flux group tower at sheba: Near-surface conditions and surface energy budget. J Geophys Res. 107:8045.Google Scholar
  83. Poulos GS, Blumen W, Fritts DC, Lundquist JK, Sun J, Burns SP, Nappo C, Banta R, Newsom R, Cuxart J, Terradellas E, Balsley B and Jensen M (2002) CASES-99: A comprehensive investigation of the stable nocturnal boundary layer. Bull Amer Meteorol Soc. 83:55–581.Google Scholar
  84. Prandtl L (1925) Bericht über Untersuchungen zur ausgebildeten Turbulenz. Z angew Math Mech. 5:136–139.Google Scholar
  85. Priestley CHB and Swinbank WC (1947) Vertical transport of heat by turbulence in the atmosphere. Proceedings Royal Society London. A189:543–561.Google Scholar
  86. Reynolds O (1894) On the dynamical theory of turbulent incompressible viscous fluids and the determination of the criterion. Phil Trans R Soc London. A 186:123–161.Google Scholar
  87. Richardson LF (1920) The supply of energy from and to atmospheric eddies. Proceedings Royal Society. A 97:354–373.Google Scholar
  88. Roedel W and Wagner T (2011) Physik unserer Umwelt: Die Atmosphäre. Springer, Berlin, Heidelberg pp.Google Scholar
  89. Schlichting H and Gersten K (2003) Boundary-Layer Theory. McGraw Hill, New York, XXIII, 799 pp.Google Scholar
  90. Schmidt W (1925) Der Massenaustausch in freier Luft und verwandte Erscheinungen. Henri Grand Verlag, Hamburg, 118 pp.Google Scholar
  91. Schoonmaker PK (1998) Paleoecological perspectives on ecological scales. In: Peterson DL and Parker VT (eds.), Ecological Scale. Columbia University Press, New York, 79–103.Google Scholar
  92. Schotland RM (1955) The measurement of wind velocity by sonic waves. J Meteorol. 12:386–390.Google Scholar
  93. Seibert P, Beyrich F, Gryning S-E, Joffre S, Rasmussen A and Tercier P (2000) Review and intercomparison of operational methods for the determination of the mixing height. Atmos Environm. 34:1001–1027.Google Scholar
  94. Sellers PJ, Hall FG, Asrar G, Strebel DE and Murphy RE (1988) The first ISLSCP field experiment (FIFE). Bull Amer Meteorol Soc. 69:22–27.Google Scholar
  95. Shen S and Leclerc MY (1995) How large must surface inhomogeneous be before they influence the convective boundary layer structure? A case study. Quart J Roy Meteorol Soc. 121:1209–1228.Google Scholar
  96. Stull RB (1988) An Introduction to Boundary Layer Meteorology. Kluwer Acad. Publ., Dordrecht, Boston, London, 666 pp.Google Scholar
  97. Suomi VE (1957) Sonic anemometer - University of Wisconsin. In: Lettau HH and Davidson B (eds.), Exploring the atmosphere’s first mile, vol 1. Pergamon Press, London, New York, 256–266.Google Scholar
  98. Sutton OG (1953) Micrometeorology. McGraw Hill, New York, 333 pp.Google Scholar
  99. Swinbank WC (1951) The measurement of vertical transfer of heat and water vapor by eddies in the lower atmosphere. J Meteorol. 8:135–145.Google Scholar
  100. Taylor GI (1915) Eddy motion in the atmosphere. Phil Trans R Soc London. A 215:1–26.Google Scholar
  101. Taylor GI (1938) The spectrum of turbulence. Proceedings Royal Society London. A 164:476–490.Google Scholar
  102. Trenberth KE, Fasullo JT and Kiehl J (2009) Earth’s Global Energy Budget. Bull Amer Meteorol Soc. 90:311–323.Google Scholar
  103. Tsvang LR, Kaprov BM, Zubkovskij SL, Dyer AJ, Hicks BB, Miyake M, Stewart RW and McDonald JW (1973) Comparison of turbulence measurements by different instuments; Tsimlyansk field experiment 1970. Boundary-Layer Meteorol. 3:499–521.Google Scholar
  104. Tsvang LR, Zubkovskij SL, Kader BA, Kallistratova MA, Foken T, Gerstmann W, Przandka Z, Pretel J, Zelený J and Keder J (1985) International turbulence comparison experiment (ITCE-81). Boundary-Layer Meteorol. 31:325–348.Google Scholar
  105. Tsvang LR, Fedorov MM, Kader BA, Zubkovskii SL, Foken T, Richter SH and Zelený J (1991) Turbulent exchange over a surface with chessboard-type inhomogeneities. Boundary-Layer Meteorol. 55:141–160.Google Scholar
  106. Vogel H-J and Roth K (2003) Moving through scales of flow and transport in soil. J Hydrol. 272:95–106.Google Scholar
  107. von Kármán T and Howarth L (1938) On the statistical theory of isotropic turbulence. Proceedings Royal Society London. A 164:192–215.Google Scholar
  108. Wendisch M and Yang P (2012) Theory of Atmospheric Radiative Transfer. Wiley & Sons, Inc., Weinheim pp.Google Scholar
  109. Wendling U, Fuchs P and Müller-Westermeier G (1997) Modellierung des Zusammenhangs von Globalstrahlung, Sonnenscheindauer und Bewölkungsgrad als Beitrag der Klimaüberwachung. Dt Wetterdienst, Forsch. Entwicklung, Arbeitsergebnisse. 45:29 pp.Google Scholar
  110. Wichura B, Buchmann N, Foken T, Mangold A, Heinz G and Rebmann C (2001) Pools und Flüsse des stabilen Kohlenstoffisotops 13C zwischen Boden, Vegetation und Atmosphäre in verschiedenen Pflanzengemeinschaften des Fichtelgebirges. Bayreuther Forum Ökologie. 84:123–153.Google Scholar
  111. Wieringa J (1980) A revaluation of the Kansas mast influence on measurements of stress and cup anemometer overspeeding. Boundary-Layer Meteorol. 18:411–430.Google Scholar
  112. Wild M, Folini D, Schär C, Loeb N, Dutton E and König-Langlo G (2013) The global energy balance from a surface perspective. Climate Dynamics. 40:3107–3134.Google Scholar
  113. Wild M, Folini D, Hakuba M, Schär C, Seneviratne S, Kato S, Rutan D, Ammann C, Wood E and König-Langlo G (2015) The energy balance over land and oceans: an assessment based on direct observations and CMIP5 climate models. Climate Dynamics. 44:3393–3429.Google Scholar
  114. Wulfmeyer V, Behrendt A, Kottmeier C, Corsmeier U, Barthlott C, Craig G, Hagen M, Althausen D, Aoshima F, Arpagaus M, Bauer HS, Bennett L, Blyth A, Brandau C, Champollion C, Crewell S, Dick G, Di Girolamo P, Dorninger M, Dufournet Y, Eigenmann R, Engelmann R, Flamant C, Foken T, Gorgas T, Grzeschik M, Handwerker J, Hauck C, Höller H, Junkermann W, Kalthoff N, Kiemle C, Klink S, König M, Krauß L, Long CN, Madonna F, Mobbs S, Neininger B, Pal S, Peters G, Pigeon G, Richard E, Rotach M, Russchenberg H, Schwitalla T, Smith V, Steinacker R, Trentmann J, Turner DD, van Baelen J, Vogt S, Volkert H, T. W, Wernli H, Wieser A and Wirth M (2011) The convective and orographically induced precipitation study (COPS): The scientific strategy, the field phase, and research highlights. Quart J Roy Meteorol Soc. 137:3–30.Google Scholar
  115. Wyngaard JC, Coté OR and Izumi Y (1971) Local free convection, similarity and the budgets of shear stree and heat flux. J Atmos Sci. 28:1171–1182.Google Scholar
  116. Wyngaard JC, Businger JA, Kaimal JC and Larsen SE (1982) Comments on ‘A revaluation of the Kansas mast influence on measurements of stress and cup anemometer overspeeding’. Boundary-Layer Meteorol. 22:245–250.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Bayreuth Center of Ecology and Environmental Research (BayCEER)University of BayreuthBayreuthGermany
  2. 2.BischbergGermany

Personalised recommendations