Advertisement

Surface Morphology and Crystallinity of Polyamides Investigated by Atomic Force Microscopy

  • Tamara Elzein
  • Maurice Brogly
  • Sophie Bistac
Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

The surface composition of a solid substrate is able to strongly the crystallization of a semicrystalline polymer adsorbed on the substrate. Interfacial interaction between polymer and substrate is indeed able to govern adsorbed chains conformation and consequently crystalline organization.The aim of this chapter is to illustrate the role of the substrate surface chemistry on the crystalline structure of polyamides. Different polyamides were adsorbed onto chemically controlled surfaces, such as thiol self-assembled monolayers (terminated by different chemical functions) grafted on gold substrates. The crystalline morphology of polyamide nanofilms adsorbed on grafted gold is analyzed by atomic force microscopy. Results show that the crystalline organization directly depends on the surface chemistry. Explanations based on interactions between the polyamide chains and the chemical groups present on the substrate are proposed.

Keywords

Atomic Force Microscope Semicrystalline Polymer Atomic Force Microscope Analysis Crystallinity Degree Inert Substrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    G. Strobl, Prog. Polym. Sci. 31, 398 (2006)Google Scholar
  2. 2.
    J.K. Hobbs, O.E. Farrance, L. Kailas, Polymer 50, 4281 (2009)Google Scholar
  3. 3.
    R. Pearce, G.J. Vancso, Polymer 39, 6743 (1998)Google Scholar
  4. 4.
    R. Pearce, G.J. Vancso, Polymer 39, 1237 (1998)Google Scholar
  5. 5.
    L.G.M. Beekmans, D.W. van der Meer, G.J. Vancso, Polymer 43, 1887 (2002)Google Scholar
  6. 6.
    L.G.M. Beekmans, M.A. Hempenius, G.J. Vancso, Eur. Polym. J. 40, 893 (2004)Google Scholar
  7. 7.
    L.G.M. Beekmans, G.J. Vancso, Polymer 41, 8975 (2000)Google Scholar
  8. 8.
    O.E. Farrance, R.A.L. Jones, J.K. Hobbs, Polymer 50, 3730 (2009)Google Scholar
  9. 9.
    H. Schönherr, R.M. Waymouth, C.W. Frank, Macromolecules 36, 2412 (2003)Google Scholar
  10. 10.
    M. Plomp, P.J.C.M. van Hoof , W.J.P. van Enckevort Surface Science 448, 231 (2000)Google Scholar
  11. 11.
    G. Reiter, C. Vasilev, K. Jradi, S. Bistac, M. Schmitt Structuring the surface of crystallizable polymers with an AFM tip, in “in Scanning Probe Microscopy in Nanoscience and Nanotechnology, Nanoscience and Nanotechnology Series (Springer, Berlin, 2010), Chapter 24, p. 833Google Scholar
  12. 12.
    W.M. De Cupere, P.G. Rouxhet, Polymer 43, 5571 (2002)Google Scholar
  13. 13.
    Y. Yuryev, P. Wood-Adams, Polymer 52, 708 (2011)Google Scholar
  14. 14.
    M. Raimo, Prog. Polym. Sci. 32, 597 (2007)Google Scholar
  15. 15.
    W. Porzio, G. Scavia, L. Barba, G. Arrighetti, S. Milita, Eur. Polym. J. 47 273 (2011)Google Scholar
  16. 16.
    H. Quan, Z.M. Li, M.B. Yang, R. Huang, Compo. Sci. Technol. 65, 999 (2005)Google Scholar
  17. 17.
    M.A. Lopez-Manchado, M. Arroyo, Polymer 40, 487 (1999)Google Scholar
  18. 18.
    S. Zhang, M.L. Minus, L. Zhu, C.P. Wong, S. Kumar, Polymer 49, 1356 (2008)Google Scholar
  19. 19.
    A. Pei, Q. Zhou, L.A. Berglund, Compos. Sci. Technol. 70, 815 (2010)Google Scholar
  20. 20.
    T. Jimbo, A. Tanioka, M. Minoura, Langmuir 15, 1829 (1999)Google Scholar
  21. 21.
    S.W. Han, C.H. Kim, S.H. Hong, Y.K. Chung, K. Kim, Langmuir 15, 1579 (1999)Google Scholar
  22. 22.
    E. Okamura, J. Umemura, T. Takenaka, Can. J. Chem. 69, 1691 (1991)Google Scholar
  23. 23.
    A. Ulman, in An Introduction to Ultrathin Organic films from Langmuir-Blodgett to Self-Assembly, (Academic, San Diego, 1991)Google Scholar
  24. 24.
    G.M. Whitesides, P.E. Labinis, Langmuir 6, 87 (1990)Google Scholar
  25. 25.
    M.K. Chaudhurry, G.M. Whitesides, Science 255, 1230 (1992)Google Scholar
  26. 26.
    J. Brandrup, E.H. Immergut, in Polymer Handbook, 4th edn. (Wiley, New York, 2003)Google Scholar
  27. 27.
    P. Dreyfuss, A. Keller, H.H. Wills, J. Polym. Sci. Part B: Polym. Phys. 11, 193 (1973)Google Scholar
  28. 28.
    H. Haberkorn, K.H. Illers, P. Simak, Coll. Polym. Sci. 257, 820 (1979)Google Scholar
  29. 29.
    E. Navarro, J.A. Subirana, J. Puiggali, Polymer 38, 3429 (1997)Google Scholar
  30. 30.
    T. Elzein, M. Brogly, J. Schultz, Polymer 44, 3649 (2003)Google Scholar
  31. 31.
    T. Elzein, M. Brogly, J. Schultz, Surf. Interface Anal. 35, 231 (2003)Google Scholar
  32. 32.
    T. Elzein, M. Brogly, G. Castelein, J. Schultz, J. Polym. Sci. Part B Polym. Phys. 40, 1464 (2002)Google Scholar
  33. 33.
    T. Elzein, M. Brogly, S. Bistac, J. Schultz, Macromol. Symp. 205, 181 (2004)Google Scholar
  34. 34.
    T. Elzein, M. Brogly, J. Schultz, Polymer 43, 4811 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Tamara Elzein
    • 1
  • Maurice Brogly
    • 1
  • Sophie Bistac
    • 1
  1. 1.Equipe Chimie et Physico-Chimie des Polymères – EnscmuUniversité de Haute AlsaceMulhouseFrance

Personalised recommendations