Advertisement

Recent Developments in In Situ SFM of Block Copolymers: 3D Volume Structures and Dynamics

  • Markus Hund
  • Clemens Liedel
  • Larisa Tsarkova
  • Alexander Böker
Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

This chapter uses various research examples to illustrate how recent developments in scanning force microscopy (SFM) allow a detailed understanding of complex soft matter structures. The central focus lies in the introduction to the technical working principle of quasi in situ SFM (QIS-SFM) which is supported by selected applications for the analysis of dynamic and structural behavior of block copolymer films under solvent vapor annealing in the presence of a high electric field. We demonstrated that the internal film structure can be reconstructed tomographically with high depth resolution by a combination of topography and phase imaging after successive surface erosion via low-pressure plasma treatment. The QIS-SFM has a large potential, which goes significantly beyond the problems and systems reported here.

Keywords

Block Copolymer Alignment Mechanism Scanning Force Microscopy National Instrument Corporation Block Copolymer Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    G.H. Fredrickson, F.S. Bates, Annu. Rev. Mater. Sci. 26, 501–550 (1996)Google Scholar
  2. 2.
    I.W. Hamley, The Physics of Block Copolymers (Oxford University Press, Oxford, 1998)Google Scholar
  3. 3.
    M. Li, C.A. Coenjarts, C.K. Ober, Adv. Polym. Sci. 190, 183–226 (2005)Google Scholar
  4. 4.
    C. Park, J. Yoon, E.L. Thomas, Polymer, 44, 6725–6760 (2003)Google Scholar
  5. 5.
    A.P. Marencic, R.A. Register, Annu. Rev. Chem. Biomol. Eng. 1, 277–297 (2010)Google Scholar
  6. 6.
    I.W. Hamley, Prog. Polym. Sci. 34, 1161–1210 (2009)Google Scholar
  7. 7.
    S.B. Darling, Prog. Polym. Sci. 32, 1152–1204 (2007)Google Scholar
  8. 8.
    M. Hund, H. Herold, Rev. Sci. Instrum. 78, 063703 (2007)Google Scholar
  9. 9.
    R. Magerle, Phys. Rev. Lett. 85, 2749–2752 (2000)Google Scholar
  10. 10.
    A. Sperschneider, M. Hund, H.G. Schoberth, F.H. Schacher, L. Tsarkova, A.H.E. Müller, A. Böker, ACS Nano 4, 5609–5616 (2010)Google Scholar
  11. 11.
    Q. Zhong, D. Inniss, K. Kjoller, V.B. Elings, Surf. Sci. Lett. 290, L688–L692 (1993)Google Scholar
  12. 12.
    V.V. Tsukruk, S. Singamaneni, Scanning Probe Microscopy of Soft Matter. Fundamentals and Practices (Wiley-VCH, Weinheim, 2011)Google Scholar
  13. 13.
    M. Lazzari, G. Liu, S. Lecommandoux (eds.), Block Copolymers in Nanoscience (Wiley-VCH, Weinheim, 2006)Google Scholar
  14. 14.
    M.J. Fasolka, A.M. Mayes, Annu. Rev. Mater. Res. 31, 323–355 (2001)Google Scholar
  15. 15.
    M.W. Matsen, Curr. Opin. Colloid Interface Sci. 3, 40–47 (1998)Google Scholar
  16. 16.
    M.W. Matsen, F.S. Bates, Macromolecules 29, 7641–7644 (1996)Google Scholar
  17. 17.
    H.-C. Kim, T.P. Russell, J. Polym. Sci. B: Polym. Phys. 39, 663–668 (2001)Google Scholar
  18. 18.
    A. Knoll, R. Magerle, G. Krausch, J. Chem. Phys. 120, 1105–1116 (2004)Google Scholar
  19. 19.
    L. Tsarkova, A. Knoll, G. Krausch, R. Magerle, Macromolecules 39, 3608–3615 (2006)Google Scholar
  20. 20.
    L. Tsarkova, G.J.A. Sevink, G. Krausch, Adv. Polym. Sci. 227, 33–73 (2010)Google Scholar
  21. 21.
    M.A. van Dijk, R. van den Berg, Macromolecules 28, 6773–6778 (1995)Google Scholar
  22. 22.
    W. van Zoelen, G. ten Brinke, Soft Matter 5, 1568–1582 (2009)Google Scholar
  23. 23.
    K.E. Sohn, K. Kojio, B.C. Berry, A. Karim, R.C. Coffin, G.C. Bazan, E.J. Kramer, M. Sprung, J. Wang, Macromolecules (2010)Google Scholar
  24. 24.
    A. Knoll, R. Magerle, G. Krausch, Macromolecules 34, 4159–4165 (2001)Google Scholar
  25. 25.
    R. Garcia, R. Magerle, R. Perez, Nat. Mater. 6, 405–411 (2007)Google Scholar
  26. 26.
    J. Hahm, S.J. Sibener, J. Chem. Phys. 114, 4730–4740 (2001)Google Scholar
  27. 27.
    M.R. Hammond, S.W. Sides, G.H. Fredrickson, E.J. Kramer, J. Ruokolainen, S.F. Hahn, Macromolecules 36, 8712–8716 (2003)Google Scholar
  28. 28.
    C. Harrison, D.H. Adamson, Z. Cheng, J.M. Sebastian, S. Sethuraman, D.A. Huse, R.A. Register, P.M. Chaikin, Science 290, 1558–1560 (2000)Google Scholar
  29. 29.
    C. Harrison, D.E. Angelescu, M. Trawick, Z. Cheng, D.A. Huse, P.M. Chaikin, D.A. Vega, J.M. Sebastian, R.A. Register, D.H. Adamson, Europhys. Lett. 67, 800–806 (2004)Google Scholar
  30. 30.
    R.A. Segalman, A. Hexemer, R.C. Hayward, E.J. Kramer, Macromolecules 36, 3272–3288 (2003)Google Scholar
  31. 31.
    L. Tsarkova, A. Horvat, G. Krausch, A.V. Zvelindovsky, G.J.A. Sevink, R. Magerle, Langmuir 22, 8089–8095 (2006)Google Scholar
  32. 32.
    L. Tsarkova, A. Knoll, R. Magerle, Nano Lett. 6, 1574–1577 (2006)Google Scholar
  33. 33.
    N.A. Yufa, J. Li, S.J. Sibener, Macromolecules 42, 2667–2671 (2009)Google Scholar
  34. 34.
    N.A. Yufa, J. Li, S.J. Sibener, Polymer 50, 2630–2634 (2009)Google Scholar
  35. 35.
    A. Horvat, A. Knoll, G. Krausch, L. Tsarkova, K.S. Lyakhova, G.J.A. Sevink, A.V. Zvelindovsky, R. Magerle, Macromolecules 40, 6930–6939 (2007)Google Scholar
  36. 36.
    A. Knoll, K.S. Lyakhova, A. Horvat, G. Krausch, G.J.A. Sevink, A.V. Zvelindovsky, R. Magerle, Nat. Mater. 3, 886–891 (2004)Google Scholar
  37. 37.
    Y. Wang, X. Hong, B. Liu, C. Ma, C. Zhang, Macromolecules 41, 5799–5808 (2008)Google Scholar
  38. 38.
    J. Hahm, W.A. Lopes, H.M. Jaeger, S.J. Sibener, J. Chem. Phys. 109, 10111–10114 (1998)Google Scholar
  39. 39.
    C. Harrison, Z. Cheng, S. Sethuraman, D.A. Huse, P.M. Chaikin, D.A. Vega, J.M. Sebastian, R.A. Register, D.H. Adamson, Phys. Rev. E 66, 011706 (2002)Google Scholar
  40. 40.
    A. Horvat, G.J.A. Sevink, A.V. Zvelindovsky, A. Krekhov, L. Tsarkova, ACS Nano 2, 1143–1152 (2008)Google Scholar
  41. 41.
    L. Tsarkova, in Nanostructured Soft Matter: Experiment, Theory, Simulation and Perspectives, ed. by A.V. Zvelindovsky (Springer, Heidelberg, 2007), pp. 231–266Google Scholar
  42. 42.
    S. Scherdel, H.G. Schoberth, R. Magerle, J. Chem. Phys. 127, 014903 (2007)Google Scholar
  43. 43.
    N.P. Balsara, B.A. Garetz, M.Y. Chang, H.J. Dai, M.C. Newstein, J.L. Goveas, R. Krishnamoorti, S. Rai, Macromolecules 31, 5309–5315 (1998)Google Scholar
  44. 44.
    M.O. Gallyamov, Macromol. Rapid Commun. 32, 1210–1246 (2011)Google Scholar
  45. 45.
    M. Hund, H. Herold, German Patent, DE 10 2004 043 191, 2006 and U.S. Patent, US 7,934,417, 2011Google Scholar
  46. 46.
    J.C. Conboy, E.J.C. Olson, D.M. Adams, J. Kerimo, A. Zaban, B.A. Gregg, P.F. Barbara, J. Phys. Chem. B 102, 4516–4525 (1998)Google Scholar
  47. 47.
    S. Hüttner, M. Sommer, A. Chiche, G. Krausch, U. Steiner, M. Thelakkat, Soft Matter 5, 4206–4211 (2009)Google Scholar
  48. 48.
    M. Hund, V. Olszowka, F. Fischer, H. Krejtschi, Rev. Sci. Instrum. 82, 113709 (2011)Google Scholar
  49. 49.
    M. Hund, V. Olszowka, H. Krejtschi, F. Fischer, Patent Application Publication, DE 10 2010 015 966 A1, 2011Google Scholar
  50. 50.
    L.C. Sawyer, D.T. Grubb, G.F. Meyers, Polymer Microscopy (Springer, London, 2008)Google Scholar
  51. 51.
    B. Drake, C.B. Prater, A.L. Weisenhorn, S.A.C. Gould, T.R. Albrecht, C.F. Quate, D.S. Cannell, H.G. Hansma, P.K. Hansma, Science 243, 1586–1589 (1989)Google Scholar
  52. 52.
    P.K. Hansma, B. Drake, U.S. Patent, US 4,935,634, 1990Google Scholar
  53. 53.
    B.A. Mantooth, Z.J. Donhauser, K.F. Kelly, P.S. Weiss, Rev. Sci. Instrum. 73, 313–317 (2002)Google Scholar
  54. 54.
    C. Dietz, S. Röper, S. Scherdel, A. Bernstein, N. Rehse, R. Magerle, Rev. Sci. Instrum. 78, 053703 (2007)Google Scholar
  55. 55.
    V. Olszowka, M. Hund, V. Kuntermann, S. Scherdel, L. Tsarkova, A. Böker, G. Krausch, Soft Matter 2, 1089–1094 (2006)Google Scholar
  56. 56.
    K. Terashima, Y. Taniguchi, N. Yamaguchi, Y. Takamura, T. Yoshida, Thin Solid Films 345, 146–150 (1999)Google Scholar
  57. 57.
    M. Su, Z. Pan, V.P. Dravid, J. Microsc-Ox. 216, 194–196 (2004)Google Scholar
  58. 58.
    D.C. Turner, C. Chang, S.L. Brandow, D.B. Murphy, B.P. Gaber, Ultramicroscopy 58, 425–434 (1995)Google Scholar
  59. 59.
    V. Olszowka, Ph.D. Thesis, Universität Bayreuth, Germany, Bayreuth, 2007Google Scholar
  60. 60.
    C. Liedel, M. Hund, V. Olszowka, A. Böker, Soft Matter 8, 995–1002 (2012)Google Scholar
  61. 61.
    P. Schellekens, N. Rosielle, H. Vermeulen, M. Vermeulen, S. Wetzels, W. Pril, CIRP Ann. 47, 557–586 (1998)Google Scholar
  62. 62.
    S.T. Smith, Flexures: Elements of Elastic Mechanisms (Gordon and Breach, Amsterdam, 2002)Google Scholar
  63. 63.
    N. Pöcheim, in Vakuum in Forschung und Praxis Nr. 1 (VCH Verlagsgesellschaft mbH, Weinheim,1995), pp. 39–46Google Scholar
  64. 64.
    A. Knoll, Ph.D. Thesis, Universität Bayreuth, Germany, Bayreuth, 2004Google Scholar
  65. 65.
    V. Olszowka, M. Hund, V. Kuntermann, S. Scherdel, L. Tsarkova, A. Böker, ACS Nano 3, 1091–1096 (2009)Google Scholar
  66. 66.
    H.G. Schoberth, V. Olszowka, K. Schmidt, A. Böker, Adv. Polym. Sci. 227, 1–31 (2010)Google Scholar
  67. 67.
    K. Amundson, E. Helfand, D.D. Davis, X. Quan, S.S. Patel, S.D. Smith, Macromolecules 24, 6546–6548 (1991)Google Scholar
  68. 68.
    T.L. Morkved, M. Lu, A.M. Urbas, E.E. Ehrichs, H.M. Jaeger, P. Mansky, T.P. Russell, Science 273, 931–933 (1996)Google Scholar
  69. 69.
    A. Böker, A. Knoll, H. Elbs, V. Abetz, A.H.E. Müller, G. Krausch, Macromolecules 35, 1319–1325 (2002)Google Scholar
  70. 70.
    Z.R. Chen, J.A. Kornfield, S.D. Smith, J.T. Grothaus, M.M. Satkowski, Science 277, 1248–1253 (1997)Google Scholar
  71. 71.
    A. Keller, E. Pedemonte, F. Willmouth, Nature 225, 538–539 (1970)Google Scholar
  72. 72.
    T. Hashimoto, J. Bodycomb, Y. Funaki, K. Kimishima, Macromolecules 32, 952–954 (1999)Google Scholar
  73. 73.
    J. Yoon, W. Lee, E.L. Thomas, Adv. Mater. 18, 2691–2694 (2006)Google Scholar
  74. 74.
    N.P. Balsara, B. Hammouda, Phys. Rev. Lett. 72, 360–363 (1994)Google Scholar
  75. 75.
    A. Böker, H. Elbs, H. Hänsel, A. Knoll, S. Ludwigs, H. Zettl, V. Urban, V. Abetz, A.H.E. Müller, G. Krausch, Phys. Rev. Lett. 89, 135502 (2002)Google Scholar
  76. 76.
    T. Xu, C.J. Hawker, T.P. Russell, Macromolecules, 36, 6178–6182 (2003)Google Scholar
  77. 77.
    T. Xu, C.J. Hawker, T.P. Russell, Macromolecules, 38, 2802–2805 (2005)Google Scholar
  78. 78.
    A. Böker, A.H.E. Müller, G. Krausch, Macromolecules, 34, 7477–7488 (2001)Google Scholar
  79. 79.
    A. Böker, K. Schmidt, A. Knoll, H. Zettl, H. Hänsel, V. Urban, V. Abetz, G. Krausch, Polymer 47, 849–857 (2006)Google Scholar
  80. 80.
    A. Böker, V. Abetz, G. Krausch, Phys. Rev. Lett. 90, 049602 (2003)Google Scholar
  81. 81.
    A.V. Zvelindovsky, G.J.A. Sevink, Phys. Rev. Lett. 90, 049601 (2003)Google Scholar
  82. 82.
    M.C. Choi, T. Pfohl, Z.Y. Wen, Y.L. Li, M.W. Kim, J.N. Israelachvili, C.R. Safinya, Proc. Natl. Acad. Sci. USA 101, 17340–17344 (2004)Google Scholar
  83. 83.
    N.D. Mermin, Rev. Mod. Phys. 51, 591–648 (1979)Google Scholar
  84. 84.
    H.R. Trebin, Adv. Phys. 31, 195–254 (1982)Google Scholar
  85. 85.
    D. Constantin, P. Oswald, Phys. Rev. Lett. 85, 4297–4300 (2000)Google Scholar
  86. 86.
    P.L. Hubbard, K.M. McGrath, P.T. Callaghan, Langmuir 21, 4340–4346 (2005)Google Scholar
  87. 87.
    M. Pinna, L. Schreier, A.V. Zvelindovsky, Soft Matter 5, 970–973 (2009)Google Scholar
  88. 88.
    S. Ludwigs, A. Böker, V. Abetz, A.H.E. Müller, G. Krausch, Polymer 44, 6815–6823 (2003)Google Scholar
  89. 89.
    S. Ludwigs, G. Krausch, R. Magerle, A.V. Zvelindovsky, G.J.A. Sevink, Macromolecules 38, 1859–1867 (2005)Google Scholar
  90. 90.
    D.Q. Ly, T. Honda, T. Kawakatsu, A.V. Zvelindovsky, Macromolecules 41, 4501–4505 (2008)Google Scholar
  91. 91.
    D.Q. Ly, T. Honda, T. Kawakatsu, A.V. Zvelindovsky, Soft Matter 5, 4814–4822 (2009)Google Scholar
  92. 92.
    K.S. Lyakhova, G.J.A. Sevink, A.V. Zvelindovsky, A. Horvat, R. Magerle, J. Chem. Phys. 120, 1127–1137 (2004)Google Scholar
  93. 93.
    A. Horvat, K.S. Lyakhova, G.J.A. Sevink, A.V. Zvelindovsky, R. Magerle, J. Chem. Phys. 120, 1117–1126 (2004)Google Scholar
  94. 94.
    S. Ludwigs, A. Böker, A. Voronov, N. Rehse, R. Magerle, G. Krausch, Nat. Mater. 2, 744–747 (2003)Google Scholar
  95. 95.
    S. Ludwigs, K. Schmidt, C.M. Stafford, E.J. Amis, M.J. Fasolka, A. Karim, R. Magerle, G. Krausch, Macromolecules 38, 1850–1858 (2005)Google Scholar
  96. 96.
    C.L. Degen, M. Poggio, H.J. Mamin, C.T. Rettner, D. Rugar, Proc. Natl. Acad Sci. USA 106, 1313–1317 (2009)Google Scholar
  97. 97.
    P.A. Midgley, M. Weyland, Ultramicroscopy 96, 413–431 (2003)Google Scholar
  98. 98.
    H. Jinnai, Y. Nishikawa, T. Ikehara, T. Nishi, Adv. Polym. Sci. 170, 115–16. (2004)Google Scholar
  99. 99.
    H. Jinnai, R.J. Spontak, T. Nishi, Macromolecules 43, 1675–1688 (2010)Google Scholar
  100. 100.
    P.A. Midgley, R.E. Dunin-Borkowski, Nat. Mater. 8, 271–280 (2009)Google Scholar
  101. 101.
    W.S. Haddad, I. McNulty, J.E. Trebes, E.H. Anderson, R.A. Levesque, L. Yang, Science 266, 1213–1215. (1994)Google Scholar
  102. 102.
    A.P. Hitchcock, G.A. Johansson, G.E. Mitchell, M.H. Keefe, T. Tyliszcak, Appl. Phys. A: Mater. Sci. Process. 92, 447–452 (2008)Google Scholar
  103. 103.
    J. Petrasch, P. Wyss, R. Stämpfli, A. Steinfeld, J. Am. Ceramic Soc. 91, 2659–2665 (2008)Google Scholar
  104. 104.
    H. Jinnai, Y. Nishikawa, R.J. Spontak, S.D. Smith, D.A. Agard, T. Hashimoto, Phys. Rev. Lett. 84, 518–521 (2000)Google Scholar
  105. 105.
    L.H. Radzilowski, B.O. Carragher, S.I. Stupp, Macromolecules 30, 2110–2119 (1997)Google Scholar
  106. 106.
    C. Harrison, M. Park, P. Chaikin, R.A. Register, D.H. Adamson, N. Yao, Macromolecules 31, 2185–2189 (1998)Google Scholar
  107. 107.
    C. Harrison, M. Park, P.M. Chaikin, R.A. Register, D.H. Adamson, N. Yao, Polymer 39, 2733–2744 (1998)Google Scholar
  108. 108.
    A.E. Efimov, A.G. Tonevitsky, M. Dittrich, N.B. Matsko, J. Microsc. 226, 207–217 (2007)Google Scholar
  109. 109.
    M. Konrad, A. Knoll, G. Krausch, R. Magerle, Macromolecules 33, 5518–5523 (2000)Google Scholar
  110. 110.
    N. Rehse, S. Marr, S. Scherdel, R. Magerle, Adv. Mater. 17, 2203–2206 (2005)Google Scholar
  111. 111.
    E. Max, M. Hund, L. Tsarkova, PMSE Preprints, 99, 689–690 (2008)Google Scholar
  112. 112.
    A. Sperschneider, F.H. Schacher, L. Tsarkova, A. Böker, A.H.E. Müller, Macromolecules 43, 10213–10215 (2010)Google Scholar
  113. 113.
    N. Grassie, G. Scott, Polymer Degradation and Stabilisation (Cambridge University Press, Cambridge, 1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Markus Hund
    • 1
  • Clemens Liedel
    • 2
  • Larisa Tsarkova
    • 2
  • Alexander Böker
    • 2
  1. 1.Lehrstuhl für Physikalische Chemie IIUniversität BayreuthBayreuthGermany
  2. 2.Lehrstuhl für Makromolekulare Materialien und Oberflächen (IPC)AachenGermany

Personalised recommendations