Single-Molecule Studies of Integrins by AFM-Based Force Spectroscopy on Living Cells

  • Robert H. Eibl
Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

The characterization of cell adhesion between two living cells at the single-molecule level, i.e., between one adhesion receptor and its counter-receptor, appears to be an experimental challenge. Atomic force microscopy (AFM) can be used in its force spectroscopy mode to determine unbinding forces of a single pair of adhesion receptors, even with a living cell as a probe. This chapter provides an overview of AFM force measurements of the integrin family of cell adhesion receptors and their ligands. A focus is given to major integrins expressed on leukocytes, such as lymphocyte function-associated antigen 1 (LFA-1) and very late antigen 4 (VLA-4). These receptors are crucial for leukocyte trafficking in health and disease. LFA-1 and VLA-1 can be activated within the bloodstream from a low-affinity to a high-affinity receptor by chemokines in order to adhere strongly to the vessel wall before the receptor-bearing leukocytes extravasate. The experimental considerations needed to provide near-physiological conditions for a living cell and to be able to measure adequate forces at the single-molecule level are discussed in detail. AFM technology has been developed into a modern and extremely sensitive tool in biomedical research. It appears now that AFM force spectroscopy could enter, within a few years, medical applications in diagnosis and therapy of cancer and autoimmune diseases.

Keywords

Atomic Force Microscope Adhesion Receptor Atomic Force Microscope Measurement Force Spectroscopy Rupture Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The author gratefully acknowledges Hermann Gaub, Martin Benoit, Vincent Moy, Xiaohui (Frank) Zhang, Olga Vinogradova, and Wolfang Knoll for expert advice in the field of AFM and nanotechnology; Irving L. Weissman, Eugene C. Butcher, Marcus Hubbe, Bernhard Holzmann, Uwe Gosslar, James Campbell, Albert Zlotnik, Anja Müller, and Horst Kessler for support and material in the field of rolling, chemokines, and tumor stem cell biology;

Timothy A. Springer and Ronen Alon for the discussion; Heinz Höfler who fully supported the idea of the technology transfer of rolling experiments to AFM nanotechnology from its beginning, Matthias Maiwald and Markus Schneemann for the critical comments on the manuscript, and Stephan Bärtsch for the discussion of approaches in systems biology. Parts of this work were supported by stipends from the German Research Council (DFG, Bonn), an award of the German Cancer Research Center (DKFZ, Heidelberg), and major traveling grants from the Max Planck Society, the Technical University of Munich, the Center for NanoScience in Munich, as well as a Dean’s Fellowship from Stanford University and tuition sponsoring by Irv Weissman.

References

  1. 1.
    G. Binnig, C. Quate, C. Gerber, Phys. Rev. Lett. 56, 930 (1986)Google Scholar
  2. 2.
    F. Giessibl, S. Hembacher, H. Bielefeldt, J. Mannhart, Science 289, 422 (2000)Google Scholar
  3. 3.
    F.J. Giessibl, Science 267, 68 (1995)Google Scholar
  4. 4.
    W. Häberle, J.K.H. Hörber, G. Binnig, J. Vac. Sci. Technol. 9, 1210 (1991)Google Scholar
  5. 5.
    H.J. Butt, Biophys. J. 60, 1438 (1991)Google Scholar
  6. 6.
    W.A. Ducker, T.J. Senden, R.M. Pashley, Nature 353, 239 (1991)Google Scholar
  7. 7.
    G.U. Lee, D.A. Kidwell, R.J. Colton, Langmuir 10, 354 (1994)Google Scholar
  8. 8.
    V.T. Moy, E.L. Florin, H.E. Gaub, Science 266, 257 (1994)Google Scholar
  9. 9.
    E.L. Florin, V.T. Moy, H.E. Gaub, Science 264, 415 (1994)Google Scholar
  10. 10.
    Y.F. Dufrêne, E. Evans, A. Engel, J. Helenius, H.E. Gaub, D.J. Müller, Nat. Methods 8, 123 (2011)Google Scholar
  11. 11.
    J. Helenius, C.P. Heisenberg, H.E. Gaub, D.J. Müller, J. Cell Sci. 121, 1785 (2008)Google Scholar
  12. 12.
    M. Rief, M. Gautel, F. Oesterhelt, J.M. Fernandez, H.E. Gaub, Science 276, 1109 (1997)Google Scholar
  13. 13.
    M. Rief, H. Clausen-Schaumann, H.E. Gaub, Nat. Struct. Biol. 6, 346 (1999)Google Scholar
  14. 14.
    P.P. Lehenkari, M.A. Horton, Biochem. Biophys. Res. Commun. 259, 645 (1999)Google Scholar
  15. 15.
    M. Benoit, D. Gabriel, G. Gerisch, H.E. Gaub, Nat. Cell Biol. 2, 313 (2000)Google Scholar
  16. 16.
    R.H. Eibl, M. Benoit, IEE Proc. Nanobiotechnol. 151, 128 (2004)Google Scholar
  17. 17.
    E.C. Butcher, Cell 67, 1033 (1991)Google Scholar
  18. 18.
    T.A. Springer, Cell 76, 301 (1994)Google Scholar
  19. 19.
    J.J. Campbell, J. Hedrick, A. Zlotnik, M.A. Siani, D.A. Thompson, E.C. Butcher, Science 279, 381 (1998)Google Scholar
  20. 20.
    J.J. Campbell, G. Haraldsen, J. Pan, J. Rottman, S. Qin, P. Ponath, D.P. Andrew, R. Warnke, N. Ruffing, N. Kassam et al., Nature 400, 776 (1999)Google Scholar
  21. 21.
    M.A. Morris, M. McDuffie, J.L. Nadler, K. Ley, Autoimmunity 44, 115 (2011)Google Scholar
  22. 22.
    K.F. Becker, M.J. Atkinson, U. Reich, H.H. Huang, H. Nekarda, J.R. Siewert, H. Höfler, Hum. Mol. Genet. 2, 803 (1993)Google Scholar
  23. 23.
    P. Panorchan, M.S. Thompson, K.J. Davis, Y. Tseng, K. Konstantopoulos, D. Wirtz, J. Cell Sci. 119, 66 (2006)Google Scholar
  24. 24.
    A. Taubenberger, D.A. Cisneros, J. Friedrichs, P.H. Puech, D.J. Muller, C.M. Franz, Mol. Biol. Cell 18, 1634 (2007)Google Scholar
  25. 25.
    E.P. Wojcikiewicz, X. Zhang, A. Chen, V.T. Moy, J. Cell Sci. 116, 2531 (2003)Google Scholar
  26. 26.
    F. Li, S.D. Redick, H.P. Erickson, V.T. Moy, Biophys. J. 84, 1252 (2003)Google Scholar
  27. 27.
    W.D. Hanley, D. Wirtz, K. Konstantopoulos, J. Cell Sci. 117, 2503 (2004)Google Scholar
  28. 28.
    W. Hanley, O. McCarty, S. Jadhav, Y. Tseng, D. Wirtz, K. Konstantopoulos, J. Biol. Chem. 278, 10556 (2003)Google Scholar
  29. 29.
    M. Grandbois, W. Dettmann, M. Benoit, H.E. Gaub, J. Histochem. Cytochem. 48(5), 719 (2000)Google Scholar
  30. 30.
    J. Fritz, A.G. Katopodis, F. Kolbinger, D. Anselmetti, Proc. Natl. Acad. Sci. USA 95, 12283 (1998)Google Scholar
  31. 31.
    W. Dettmann, M. Grandbois, S. André, M. Benoit, A.K. Wehle, H. Kaltner, H.J. Gabius, H.E. Gaub, Arch. Biochem. Biophys. 383, 157 (2000)Google Scholar
  32. 32.
    W. Baumgartner, P. Hinterdorfer, W. Ness, A. Raab, D. Vestweber, H. Schindler, D. Drenckhahn, Proc. Natl. Acad. Sci. USA 97, 4005 (2000)Google Scholar
  33. 33.
    J. Wong, A. Chilkoti, V.T. Moy, Biomol. Eng. 16, 45 (1999)Google Scholar
  34. 34.
    C. Yuan, A. Chen, P. Kolb, V.T. Moy, Biochemistry 39, 10219 (2000)Google Scholar
  35. 35.
    C.E. Chivers, E. Crozat, C. Chu, V.T. Moy, D.J. Sherratt, M. Howarth, Nat. Methods 5, 391 (2010)Google Scholar
  36. 36.
    E. Kokkoli, S.E Ochsenhirt, M. Tirrell, Langmuir 20, 2397 (2004)Google Scholar
  37. 37.
    A. Chen, V.T. Moy, Methods Cell Biol. 68, 301 (2002)Google Scholar
  38. 38.
    P. Hinterdorfer, W. Baumgartner, H.J. Gruber, K. Schilcher, H. Schindler, Proc. Natl. Acad. Sci. USA 93, 3477 (1996)Google Scholar
  39. 39.
    K.F. Becker, E. Kremmer, M. Eulitz, I. Becker, G. Handschuh, C. Schuhmacher, W. Müller, H.E. Gabbert, A. Ochiai, S. Hirohashi, H. Höfler, Am. J. Pathol. 155:1803 (1999)Google Scholar
  40. 40.
    H.B.J. Stamper, J.J. Woodruff, J. Exp. Med. 144, 828 (1976)Google Scholar
  41. 41.
    R.A. Warnock, S. Askari, E.C. Butcher, U.H. von Andrian, J. Exp. Med. 187, 205 (1998)Google Scholar
  42. 42.
    P. Vajkoczy, M. Laschinger, B. Engelhardt, J. Clin. Invest. 108, 557 (2001)Google Scholar
  43. 43.
    H.C. DeGrendele, P. Estess, L.J. Picker, M.H. Siegelman, J. Exp. Med. 183, 1119 (1996)Google Scholar
  44. 44.
    H.C. DeGrendele, P. Estess, M.H. Siegelman, Science 278, 672 (1997)Google Scholar
  45. 45.
    N. Hogg, I. Patzak, F. Willenbrock, Nat. Rev. Immunol. 11, 416 2011)Google Scholar
  46. 46.
    C. Giagulli, E. Scarpini, L. Ottoboni, S. Narumiya, E.C. Butcher, G. Constantin, C. Laudanna, Immunity 20, 25 (2004)Google Scholar
  47. 47.
    C. Berlin, R.F. Bargatze, J.J. Campbell, U.H. von Andrian, M.C. Szabo, S.R. Hasslen, R.D. Nelson, E.L. Berg, S.L. Erlandsen, E.C. Butcher, Cell 80, 413 (1995)Google Scholar
  48. 48.
    P. Altevogt, M. Hubbe, M. Ruppert, J. Lohr, P. von Hoegen, M. Sammar, D.P. Andrew, L. McEvoy, M.J. Humphries, E.C. Butcher, J. Exp. Med. 182:345 (1995)Google Scholar
  49. 49.
    R.H. Eibl, I.L. Weissman, H.E. Gaub, M. Benoit, Clin. Invest. Med. 27, 4 (2004)Google Scholar
  50. 50.
    R.H. Eibl, V.T. Moy, in Recent Research Development in Biophysics, ed. by S.G. Pandalai (TRN, Trivandrum, 2004), p. 235Google Scholar
  51. 51.
    R.H. Eibl, in Immunology, vol 1, ed. by E. Skamene (Medimond, Bologna, 2004), p. 115Google Scholar
  52. 52.
    R.H. Eibl, V.T. Moy, Methods Mol. Biol. 305, 439 (2005)Google Scholar
  53. 53.
    R.H. Eibl, V.T. Moy, in Protein–Ligand Interactions, ed. by G.U. Nienhaus (Humana Press, Totowa, 2005), p. 450Google Scholar
  54. 54.
    R.H. Eibl, in Advances in Single Molecule Research for Biology and Nanoscience, ed. by P. Hinterdorfer, G. Schuetz, P. Pohl (Trauner, Linz, 2007), p. 40Google Scholar
  55. 55.
    R.H. Eibl, in Applied Scanning Probe Methods XII, ed. by B. Bhushan (Springer, Heidelberg, 2008), p. 1Google Scholar
  56. 56.
    R.H. Eibl, in Scanning Probe Microscopy in Nanoscience and Nanotechnology, vol 2, ed. by B. Bhushan (Springer, Heidelberg, 2011), p. 197Google Scholar
  57. 57.
    M.F. Clarke, J.E. Dick, P.B. Dirks, C.J. Eaves, C.H.M. Jamieson, D.L. Jones, J. Visvader, I.L. Weissman, G.M. Wahl, Cancer Res. 66, 9339 (2006)Google Scholar
  58. 58.
    X. Zhang, E. Wojcikiewicz, V.T. Moy, Biophys. J. 83, 2270 (2002)Google Scholar
  59. 59.
    A. Chen, V.T. Moy, Biophys. J. 78, 2814 (2000)Google Scholar
  60. 60.
    M.E. Hemler, C. Huang, L. Schwarz, J. Biol. Chem. 262, 3300 (1987)Google Scholar
  61. 61.
    M.E. Hemler, C. Huang, Y. Takada, L. Schwarz, J.L. Strominger, M.L. Clabby, J. Biol. Chem. 262, 11478 (1987)Google Scholar
  62. 62.
    F. Sanchez-Madrid, P. Simon, S. Thompson, T.A. Springer, J. Exp. Med. 158, 586 (1983)Google Scholar
  63. 63.
    M.L. Dustin, T.A. Springer, Annu. Rev. Immunol. 9, 27 (1991)Google Scholar
  64. 64.
    E.C. Butcher, L.J. Picker, Science 272, 60 (1996)Google Scholar
  65. 65.
    A. Mikulowska, G.G. Johnson, J.M. Berberian, E.C. Butcher, L.M. McEvoy, S.A. Michie, Cell Immunol. 194, 112 (1999)Google Scholar
  66. 66.
    G.G. Johnson, A. Mikulowska, E.C. Butcher, L.M. McEvoy, S.A. Michie, J. Immunol. 163, 5678 (1999)Google Scholar
  67. 67.
    D. Gottschling, J. Boer, A. Schuster, B. Holzmann, H. Kessler, Angew. Chem. Int. Ed. Engl. 41, 3007 (2002)Google Scholar
  68. 68.
    E. Locardi, J. Boer, A. Modlinger, A. Schuster, B. Holzmann, H. Kessler, J. Med. Chem. 46, 5752 (2003)Google Scholar
  69. 69.
    P.P. Lehenkari, G.T. Charras, S.A. Nesbitt, M.A. Horton, Expert Rev. Mol. Med. 2, 1 (2000)Google Scholar
  70. 70.
    X. Zhang, D.F. Bogorin, V.T. Moy, Chemphyschem 5, 175 (2004)Google Scholar
  71. 71.
    X. Zhang, E.P. Wojcikiewicz, V.T. Moy, Exp. Biol. Med. 231, 1306 (2006)Google Scholar
  72. 72.
    U. Dammer, O. Popescu, P. Wagner, D. Anselmetti, H.J. Güntherodt, G.N. Misevic, Science 267, 1173 (1995)Google Scholar
  73. 73.
    R. Merkel, P. Nassoy, A. Leung, K. Ritchie, E. Evans, Nature 397, 50 (1999)Google Scholar
  74. 74.
    S.S. Wong, E. Joselevich, A.T. Woolley, C.L. Cheung, C.M. Lieber, Nature 394, 52 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Robert H. Eibl
    • 1
  1. 1.Institute of PathologyTechnical University of MunichMunichGermany

Personalised recommendations