Skip to main content

Solid-State Thin-Film Lithium Batteries for Integration in Microsystems

  • Chapter
  • First Online:
Scanning Probe Microscopy in Nanoscience and Nanotechnology 3

Part of the book series: NanoScience and Technology ((NANO))

Abstract

The increasing miniaturization of electronic devices requires the miniaturization of devices that provide energy to them. Autonomous devices of reduced energy consumption are increasingly common and they have benefited from energy harvesting techniques. However, these devices often have peak power consumption, requiring storage of energy.This chapter presents the fabrication and characterization of thin-films for solid-state lithium battery. The solid-state batteries stand out for the possibility of all materials being solid and therefore ideal for microelectronics fabrication techniques. Lithium batteries are composed primarily of three materials, the cathode, the electrolyte and the anode. The positive electrode (cathode) and negative (anode) have high electrical conductivity and capacity for extraction and insertion of lithium ions. The electrolyte’s main features are the high ionic conductivity and high electrical resistivity. The materials chosen for the battery are lithium cobalt oxide (cathode), lithium phosphorus oxynitride (electrolyte), and metallic lithium (anode).The lithium cobalt oxide cathode (LiCoO2) was deposited by RF sputtering and characterized using the XRD, EDX, SEM techniques, and electrical resistivity. Fully crystalline \({\mathrm{LiCoO}}_{2}\) was achieved with an annealing of \(65{0}^{\circ }\mathrm{C}\) in vacuum for 2 h. Electrical resistivity of \(3.7\,\Omega \cdot \)mm was achieved.The lithium phosphorus oxynitride electrolyte (LIPON) was deposited by RF sputtering and characterized using the techniques EDX, SEM, ionic conductivity, DSC, and TGA. Ionic conductivity of \(6.3 \times 1{0}^{-7}\,\mathrm{S} \cdot {\mathrm{cm}}^{-1}\) for a temperature of \(2{6}^{\circ }\mathrm{C}\) was measured. The thermal stability of LIPON up to \(40{0}^{\circ }\mathrm{C}\) was also proved.The metallic lithium anode (Li) was deposited by thermal evaporation and its electrical resistance measured at four points during the deposition. Resistance of about 3. 5 Ω was measured for a thickness of 3 μm. The oxidation rate of the lithium in contact with the ambient atmosphere was evaluated. The patterning process of the battery was developed by means of shadow masks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Minami et al., Solid State Ionics for Batteries (Springer, New York, 2005)

    Google Scholar 

  2. N. Ariel, Integrated thin film batteries on silicon, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, 2005

    Google Scholar 

  3. K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chem. Rev. 104, 4303–4417 (2004)

    Google Scholar 

  4. F.S. Spear, The quantitative relationships among P, T, chemical potential, phase composition and reaction progress in igneous and metamorphic systems, Mineral. Petrol. 99, 249–256 (1988)

    Google Scholar 

  5. A. Volta, On the electricity excited by the mere contact of conducting substances of different species, Philos. Trans. R. Soc. 90, 289 (1800)

    Google Scholar 

  6. I. Buchmann, Batteries in a Portable World (Cadex Electronics Inc., Nuremberg, 1997)

    Google Scholar 

  7. P. Gallone, Galvani’s frog: Harbinger of a new era, Electrochim. Acta 31, 1485–1490 (1986)

    Google Scholar 

  8. M. Piccolino, The bicentennial of the voltaic battery (1800–2000): the artificial electric organ, Perspectives 23, 147–151 (2000)

    Google Scholar 

  9. http://www.mpoweruk.com/history.htm Consulted on 23 May 2012

  10. http://www.energizer.eu. Consulted on 23 May 2012

  11. R. Moshtev, B. Johnson, State of the art of commercial Li ion batteries, J. Power Sources 91, 86–91 (2000)

    Google Scholar 

  12. Y. Nishi, Lithium ion secondary batteries; past 10 years and the future, J. Power Sources 100, 101–106 (2001)

    Google Scholar 

  13. K. Murata et al., An overview of the research and development of solid polymer electrolyte batteries, Electrochim. Acta 45, 1501–1508 (2000)

    Google Scholar 

  14. http://www.cymbet.com/products/index.php. Consulted on 23 May 2012

  15. M. Armand, J. Tarascon, Building better batteries, Nature 451, 652–657 (2008)

    Google Scholar 

  16. A.S. Aricò et al., Nanostructured materials for advanced energy conversion and storage devices, Nat. Mater. 4, 366–377 (2005)

    Google Scholar 

  17. L.F. Nazar et al., Nanostructured materials for energy storage, Int. J. Inorg. Mater. 3, 191–200 (2001)

    Google Scholar 

  18. P.G. Bruce et al., Nanomaterials for rechargeable lithium batteries, Angew. Chem. Int. Ed. 47, 2930–2946 (2008)

    Google Scholar 

  19. W.-Y. Li et al., \({\mathrm{Co}}_{3}{\mathrm{O}}_{4}\) nanomaterials in lithium-ion batteries and gas sensors, Adv. Funct. Mater. 15, 851–857 (2005)

    Google Scholar 

  20. H. Chen et al., From biomass to a renewable \({\mathrm{Li}}_{X}{\mathrm{C}}_{6}{\mathrm{O}}_{6}\) organic electrode for sustainable Li-ion batteries, ChemSusChem 1, 348–355 (2008)

    Google Scholar 

  21. A. Patil et al., Issue and challenges facing rechargeable thin film lithium batteries, Mater. Res. Bull. 43, 1913–1942 (2008)

    Google Scholar 

  22. K. Kanehori et al., Thin film solid electrolyte and its application to secondary lithium cell, Solid State Ionics 9–10, 1445–1448 (1983)

    Google Scholar 

  23. I.E. Kelly et al., Poly(ethylene oxide) electrolytes for operation at near room temperature, J. Power Sources 14, 13–21 (1985)

    Google Scholar 

  24. H. Ohtsuka and J. Yamaki, Preparation and electrical conductivity of \({\mathrm{Li}}_{2}\mathrm{O} -{\mathrm{V}}_{2}{\mathrm{O}}_{5} -{\mathrm{SiO}}_{2}\) thin films, J. Appl. Phys. 28, 2264–2267 (1989)

    Google Scholar 

  25. H. Ohtsuka et al., Solid state battery with \({\mathrm{Li}}_{2}\mathrm{O} -{\mathrm{V}}_{2}{\mathrm{O}}_{5} -{\mathrm{SiO}}_{2}\) solid electrolyte thin film, Solid State Ionics 40–41, 964–966 (1990)

    Google Scholar 

  26. M.M. Mojarradi et al., Power management and distribution for system on a chip for space applications, Jet Propulsion Laboratory, California Institute of technology, n.\({}^{\circ }\,284\)

    Google Scholar 

  27. X. Yu et al., A stable thin-film lithium electrolyte: lithium phosphorus oxynitride, J. Electrochem. Soc. 144, 524–532 (1997)

    Google Scholar 

  28. B. Wang et al., Characterization of thin-film rechargeable lithium batteries with lithium cobalt oxide cathodes, J. Electrochem. Soc. 143, 3203–3213 (1996)

    Google Scholar 

  29. B.J. Neudecker et al., “Lithium-free” thin-film battery with in situ plated Li anode, J. Electrochem. Soc. 147, 517–523 (2000)

    Google Scholar 

  30. Y.S. Park et al., All-solid-state lithium thin-film rechargeable battery with lithium manganese oxide, Electrochem. Solid-State Lett. 2, 58–59 (1999)

    Google Scholar 

  31. M. Baba et al., Fabrication and electrochemical characteristics of all-solid-state lithium-ion batteries using \({\mathrm{V}}_{2}{\mathrm{O}}_{2}\) thin films for both electrodes, Electrochem. Solid-State Lett. 2, 320–322 (1999)

    Google Scholar 

  32. M. Baba et al., Fabrication and electrochemical characteristics of all-solid-state lithium-ion rechargeable batteries composed of \({\mathrm{LiMn}}_{2}{\mathrm{O}}_{4}\) positive and \({\mathrm{V}}_{2}{\mathrm{O}}_{5}\) negative electrodes, J. Power Sources 97–98, 798–800 (2001)

    Google Scholar 

  33. M. Baba et al., Multi-layered Li-ion rechargeable batteries for a high-voltage and high-current solid-state power source, J. Power Sources 119–121, 914–917 (2003)

    Google Scholar 

  34. G. Meunier et al., New positive-electrode materials for lithium thin film secondary batteries, Mater. Sci. Eng. B 3, 19–23 (1989)

    Google Scholar 

  35. S.S. Zhang, The effect of the charging protocol on the cycle life of a Li-ion battery, J. Power Sources 161, 1385–1391 (2006)

    Google Scholar 

  36. N.J. Dudney et al., Nanocrystalline \({\mathrm{Li}}_{X}{\mathrm{Mn}}_{2} -{\mathrm{YO}}_{4}\) cathodes for solid-state thin-film rechargeable lithium batteries, J. Electrochem. Soc. 146, 2455–2464 (1999)

    Google Scholar 

  37. J.B. Bates et al., 5 volt plateau in \({\mathrm{LiMn}}_{2}{\mathrm{O}}_{4}\) thin films, J. Electrochem. Soc. 142, L149–L151 (1995)

    Google Scholar 

  38. J.B. Bates et al., Thin-film rechargeable lithium batteries, J. Power Sources 54, 58–62 (1995)

    Google Scholar 

  39. B.J. Neudecker et al., Lithium silicon tin oxynitride (\({\mathrm{Li}}_{\mathrm{Y}}\mathrm{SiTON}\)): high-performance anode in thin-film lithium-ion batteries for microelectronics, J. Power Sources 81–82, 27–32 (1999)

    Google Scholar 

  40. S.D. Jones, J.R. Akridge, A thin film solid state microbattery, Solid State Ionics 53–56, 628–634 (1992)

    Google Scholar 

  41. http://www.infinitepowersolutions.com/. Consulted on 23 May 2012

  42. J.O. Besenhard, Handbook of Battery Materials (Wiley, Weinheim, 1999)

    Google Scholar 

  43. F.M. Gray, Solid Polymer Electrolytes: Fundamentals and Technological Applications (VCH Publishers, New York, 1991)

    Google Scholar 

  44. M. Armand et al., Extended Abstracts Second International Conference on Solid Electrolytes, St Andrews, Scotland, 1978

    Google Scholar 

  45. J.-M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries Nature 414, 359 (2001)

    Google Scholar 

  46. F.M. Gray, Polymer Electrolytes, RSC Materials Monographs (Royal Society of Chemistry, London, 1997)

    Google Scholar 

  47. D.E. Fenton et al., Complexes of alkali metal ions with poly (ethylene oxide), Polymer 14, 589 (1973)

    Google Scholar 

  48. P.G. Bruce (ed.), Solid-State Electrochemistry (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  49. P.M. Blonsky et al., Polyphosphazene solid electrolytes, J. Am. Chem. Soc. 106, 6854–6855 (1984)

    Google Scholar 

  50. J.R. MacCallum, C.A. Vincent (ed.), Polymer Electrolytes Reviews (Elsevier Applied Science, London, 1987), pp. 1–22

    Google Scholar 

  51. R. Frech, S. Chintapalli, Effect of propylene carbonate as a plasticizer in high molecular weight \(\mathrm{PEO} -{\mathrm{LiCF}}_{3}{\mathrm{SO}}_{3}\) electrolytes, Solid State Ionics 61–85 (1996)

    Google Scholar 

  52. M.M. Silva et al., Study of novel lithium salt-based, plasticized polymer electrolytes, J. Power Sources 111, 52–57 (2002)

    Google Scholar 

  53. M.M. Silva et al., Characterization of a novel polymer electrolyte based on a plasticizing lithium salt, in AdvancedBatteriesandSuperCapacitors, ed. by G. Nazri, R. Koetz, B. Scrosati, P.A. Moro, E.S. Takeuchi (The Electrochemical Society Proceedings Series PV2001-21, 2003), p. 476

    Google Scholar 

  54. CW Walker, M. Salomon, Improvement of ionic conductivity in plasticized PEO-based solid polymer electrolytes, J. Electrochem. Soc. 140, 3409 (1993)

    Google Scholar 

  55. F. Alloin et al., Conductivity measurements of LiTFSI triblock copolymers with a central POE sequence, Electrochim. Acta 37, 1729 (1992)

    Google Scholar 

  56. A.L. Pont et al., Pyrrolidinium-based polymeric ionic liquids as mechanically and electrochemically stable polymer electrolytes, J. Power Sources 188, 558–563 (2009)

    Google Scholar 

  57. M. Armand et al., in Second International Symposium on Polymer Electrolytes, ed. by B. Scrosati (Elsevier Applied Science, New York, 1990), p. 91

    Google Scholar 

  58. W. Gorecki et al., Physical properties of solid polymer electrolyte PEO(LiTFSI) complexes, Phys. Condens. Matter 7, 6823 (1995)

    Google Scholar 

  59. A. Vallée et al., Comparative study of poly(ethylene oxide) electrolytes made with \(\mathrm{LiN}{({\mathrm{CF}}_{3}{\mathrm{SO}}_{2})}_{2}\), \({\mathrm{LiCF}}_{3}{\mathrm{SO}}_{3}\) and \({\mathrm{LiClO}}_{4}\): thermal properties and conductivity behaviour, J. Electrochim. Acta 37, 1623 (1992)

    Google Scholar 

  60. M. Hernandez et al., Spectroscopic characterization of metal chloride/polyamide complexes, Ionics 1, 454 (1995)

    Google Scholar 

  61. S. Lascaud et al., Phase diagrams and conductivity behavior of poly (ethylene oxide)-molten salt rubbery electrolytes, Macromolecules 27, 7469 (1994)

    Google Scholar 

  62. F. Gray, Polymer Electrolytes, RSC Materials Monographs (The Royal Society of Chemistry, London, 1997)

    Google Scholar 

  63. S.S. Zhang et al., Understanding formation of solid electrolyte interface film on \({\mathrm{LiMn}}_{2}{\mathrm{O}}_{4}\) electrode, J. Electrochem. Soc. 149, A586 (2002)

    Google Scholar 

  64. S.S. Zhang et al., A new approach toward improved low temperature performance of Li-ion battery, Electrochem. Commun. 4, 928 (2002)

    Google Scholar 

  65. S.S. Zhang et al., Low-temperature performance of Li-ion cells with a \({\mathrm{LiBF}}_{4}\)-based electrolyte, J. Solid State Electrochem. 7, 147 (2003)

    Google Scholar 

  66. P.C. Barbosa et al., Phase relationships and conductivity of the polymer electrolytes poly(ethylene oxide)/lithium tetrafluoroborate and poly(ethylene oxide)/lithium trifluoromethanesulfonate, J. Mater. Chem. 20, 723 (2010)

    Google Scholar 

  67. S.M. Zahurak, M.L. Kaplan, E.A. Rietman, D.W. Murphy, R.J. Cava, Phase relationships and conductivity of the polymer electrolytes poly(ethylene oxide)/lithium tetrafluoroborate and poly(ethylene oxide)/lithium trifluoromethanesulfonate, Macromolecules 21, 654 (1988)

    Google Scholar 

  68. M.M. Silva et al., Characterization of solid polymer electrolytes based on poly(trimethylenecarbonate) and lithium tetrafluoroborate, Electrochim. Acta 49, 1887 (2004)

    Google Scholar 

  69. G. Chiodelli et al., Ionic conduction and thermal properties of PEO-lithium tetrafluoro borate films, Solid State Ionics 28–30, 1009 (1988)

    Google Scholar 

  70. M.B. Armand et al., Fast Ion Transport in Solids (Elsevier, Amsterdam, 1979), pp. 131–136

    Google Scholar 

  71. J.H. Correia, J.P. Carmo, Introdução às microtecnologias no silício, LIDEL, 2010, ISBN: 978-972-757-716-3

    Google Scholar 

  72. A.A.R. Elshabini-Riad, F.D. Barlow III, Thin Film Technology Handbook (McGraw-Hill Companies, New York, 1998)

    Google Scholar 

  73. N. Maluf, An Introduction to Microelectromechanical Systems Engineering (Artech House, London, 2000)

    Google Scholar 

  74. S.A. Campbell, The Science and Engineering of Microelectronic Fabrication (Oxford University Press, Oxford, 2001)

    Google Scholar 

  75. L. Gonçalves, Microssistema termoeléctrico baseado em teluretos de bismuto e antimónio, Ph.D. thesis, University of Minho, 2008

    Google Scholar 

  76. B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction (Addison-Wesley, New York, 1978)

    Google Scholar 

  77. http://www.purdue.edu/rem/rs/sem.htm Consulted on 23 May 2012

  78. L.J. van der Pauw, A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shape, Philips Tech. Rev. 20, 220–224 (1958)

    Google Scholar 

  79. Carlos Silva, Preparação e caracterização de electrólitos poliméricos, Ph.D. thesis, University of Minho, 1996

    Google Scholar 

  80. C.R.A. Catlow et al., An EXAFS study of the structure of rubidium polyethyleneoxide salt complexes, Solid State Ionics 9–10, 1107–1113 (1983)

    Google Scholar 

  81. P.G. Bruce et al., Preliminary results on a new polymer electrolyte \(\mathrm{PEO} -\mathrm{Hg}{({\mathrm{ClO}}_{4})}_{2}\), Br. Polym. J. 20, 193–194 (1988)

    Google Scholar 

  82. R.D. Armstrong, M.D. Clarke, Lithium ion conducting polymeric electrolytes based on poly(ethylene) adipate, Electrochim. Acta 29, 1443–1446 (1984)

    Google Scholar 

  83. C.A. Vincent, Polymer electrolytes, Prog. Solid State Chem, 17, 145–261 (1987)

    Google Scholar 

  84. M. Watanabe et al., Effects of polymer structure and incorporated salt species on ionic conductivity of polymer complexes formed by aliphatic polyester and alkali metal thiocyanate, Macromolecules 19, 188–192 (1986)

    Google Scholar 

  85. F.M. Gray, Polymer Electrolytes, RSC Materials Monographs (The Royal Society of Chemistry, London, 1997)

    Google Scholar 

  86. M.E. Orazem, B. Tribollet, Electrochemical Impedance Spectroscopy (John Wiley & Sons, New York, 2008)

    Google Scholar 

  87. M. Plancha, Electrólitos poliméricos para sistemas electroquímicos de energia, Ph.D. thesis, Technical University of Lisbon, 2008

    Google Scholar 

  88. M.E. Brown, Introduction to Thermal Analysis: Techniques and Applications (Kluwer Academic, Dordrecht, 2001)

    Google Scholar 

  89. K. Sreenivas et al., Investigation of Pt/Ti bilayer metallization on silicon for ferroelectric thin film integration, J. Appl. Phys. 75, 232–239 (1994)

    Google Scholar 

  90. C.Y. Ting, M. Wittmer, The use of titanium-based contact barrier layers in silicon technology, Thin Solid Films 96, 327–345 (1982)

    Google Scholar 

  91. S.L. Firebaugh et al., Investigation of high-temperature degradation of platinum thin films with an in situ resistance measurement apparatus, J. Microelectromech. Syst. 7(1), 128–135 (1998)

    Google Scholar 

  92. M.-S. Park, Performance evaluation of printed \({\mathrm{LiCoO}}_{2}\) cathodes with PVDF-HFP gel electrolyte for lithium ion microbatteries, Electrochim. Acta 53, 5523–5527 (2008)

    Google Scholar 

  93. L. Predoana, Electrochemical properties of the \({\mathrm{LiCoO}}_{2}\) powder obtained by sol-gel method, J. Eur. Ceram. Soc. 27, 1137–1142 (2007)

    Google Scholar 

  94. L. Predoana et al., Advanced techniques for \({\mathrm{LiCoO}}_{2}\) preparation and testing, in Proceedings of the International Workshop, Sofia, Bulgaria, 4–9 September de 2004

    Google Scholar 

  95. H.Y. Park et al., Bias sputtering and characterization of \({\mathrm{LiCoO}}_{2}\) thin film cathodes for thin film microbattery, Mater. Chem. Phys. 93, 70–78 (2005)

    Google Scholar 

  96. Powder Diffraction File, Joint Committee on Powder Diffraction Standards, ASTM, Philadelphia, 1967

    Google Scholar 

  97. J.B. Bates et al., Thin-film lithium and lithium-ion batteries, Solid State Ionics 135, 33–45 (2000)

    Google Scholar 

  98. Y. Hamon et al., Influence of sputtering conditions on ionic conductivity of LIPON thin films, Solid State Ionics 177, 257–261 (2006)

    Google Scholar 

  99. N.J. Dudney, B.J. Neudecker, Solid state thin-film lithium battery systems, Solid State Mater. Sci. 5, 479–482 (1999)

    Google Scholar 

  100. N.J. Dudney, Solid-state thin-film rechargeable batteries, Mater. Sci. Eng. B 116, 245–249 (2005)

    Google Scholar 

  101. H.Y. Park et al., Effects of sputtering pressure on the characteristics of lithium ion conductive lithium phosphorous oxynitride thin film, J. Electroceram 17, 1023–1030 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ribeiro, J.F., Silva, M.F., Carmo, J.P., Gonçalves, L.M., Silva, M.M., Correia, J.H. (2012). Solid-State Thin-Film Lithium Batteries for Integration in Microsystems. In: Bhushan, B. (eds) Scanning Probe Microscopy in Nanoscience and Nanotechnology 3. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25414-7_20

Download citation

Publish with us

Policies and ethics