Characterization and Optimization of Quartz Tuning Fork-Based Force Sensors for Combined STM/AFM

  • Andres Castellanos-Gomez
  • Nicolás Agraït
  • Gabino Rubio-Bollinger
Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

This chapter will be divided in two main parts. In the first one, we will show a detailed analysis of the dynamics of quartz tuning fork resonators which are being increasingly used in scanning probe microscopy as force sensors. We will also show that a coupled harmonic oscillators model, which includes a finite coupling between the prongs, is in remarkable agreement with the observed motion of the tuning forks. Relevant parameters for the tuning fork performance such as the effective spring constant can be obtained from our analysis. In the second one, we will present an implementation of a quartz tuning fork supplemented with optimized tips based on carbon fibers. The remarkable electrical and mechanical properties of carbon fiber make these tips more suitable for combined and/or simultaneous STM and AFM than conventional metallic tips. The fabrication and the characterization of these carbon fiber tips as well as their performance in STM/AFM will be detailed.

Keywords

Carbon Fiber Scanning Tunneling Microscope Tuning Fork Force Gradient Quartz Tuning Fork 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

A.C-G. acknowledges fellowship support from the Comunidad de Madrid (Spain). This work was supported by MICINN (Spain) (MAT2008-01735, MAT2011-25046 and Consolider-Ingenio-2010 CSD-2007-00010) and Comunidad de Madrid (Spain) through the program Citecnomik (S_0505/ESP/0337).

References

  1. 1.
    K. Karrai, R.D. Grober, Piezoelectric tip-sample distance control for near-field optical microscopes. Appl. Phys. Lett. 66(14), 1842–1844 (1995)Google Scholar
  2. 2.
    F.J. Giessibl, M. Herz, J. Mannhart, Friction traced to the single atom. Proc. Natl. Acad Sci. 99(19), 12006–12010 (2002)Google Scholar
  3. 3.
    F.J. Giessibl, et al., Subatomic features on the silicon (111)-(7 ×7) surface observed by atomic force microscopy. Science 289(5478), 422–425 (2000)Google Scholar
  4. 4.
    G. Rubio-Bollinger, P. Joyez, N. Agrait, Metallic adhesion in atomic-size junctions. Phys. Rev. Lett. 93(11), 116803 (2004)Google Scholar
  5. 5.
    M. Ternes, et al. The force needed to move an atom on a surface. Science 319(5866), 1066–1069 (2008)Google Scholar
  6. 6.
    J. Rychen, et al. Operation characteristics of piezoelectric quartz tuning forks in high magnetic fields at liquid helium temperatures. Rev. Sci. Instrum. 71, 1695 (2000)Google Scholar
  7. 7.
    T. Albrecht, et al. Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J. Appl. Phys. 69(2), 668 (1991)Google Scholar
  8. 8.
    F.J. Giessibl, High-speed force sensor for force microscopy and profilometry utilizing a quartz tuning fork. Appl. Phys. Lett. 73(26), 3956–3958 (1998)Google Scholar
  9. 9.
    F. Giessibl, A direct method to calculate tip–sample forces from frequency shifts in frequency-modulation atomic force microscopy. App. Phys. Lett. 78, 123 (2001)Google Scholar
  10. 10.
    J. Rychen, Combined low-temperature scanning probe microscopy and magneto-transport experiments for the local investigation of mesoscopic sysmtems. Ph.D. thesis, Eidgenössische Technische Hochschule Zürich (2001)Google Scholar
  11. 11.
    G.H., Simon, M. Heyde, H.P. Rust, Recipes for cantilever parameter determination in dynamic force spectroscopy: spring constant and amplitude. Nanotechnology 18(25), 12 (2007)Google Scholar
  12. 12.
    A. Castellanos-Gomez, N. Agrait, G. Rubio-Bollinger, Carbon fibre tips for scanning probe microscopy based on quartz tuning fork force sensors. Nanotechnology 21(14), 145702 (2010)Google Scholar
  13. 13.
    R.H.M. Smit, et al., A low temperature scanning tunneling microscope for electronic and force spectroscopy. Rev. Sci. Instrum. 78(11), 113705 (2007)Google Scholar
  14. 14.
    H. Le Sueur, et al., Phase controlled superconducting proximity effect probed by tunneling spectroscopy. Phys. Rev. Lett. 100(19), 197002 (2008)Google Scholar
  15. 15.
    A. Castellanos-Gomez, N. Agraït, G. Rubio-Bollinger, Dynamics of quartz tuning fork force sensors used in scanning probe microscopy. Nanotechnology 20(21), 215502 (2009)Google Scholar
  16. 16.
    T. Hayashi, et al., Evaluation of tuning fork type force transducer for use as a transfer standard. Measurement 41(9), 941–949 (2008)Google Scholar
  17. 17.
    J. Liu, et al., A simple and accurate method for calibrating the oscillation amplitude of tuning-fork based AFM sensors. Ultramicroscopy 109(1), 81–84 (2008)Google Scholar
  18. 18.
    Y. Qin, R. Reifenberger, Calibrating a tuning fork for use as a scanning probe microscope force sensor. Rev. Sci. Instrum. 78, 063704 (2007)Google Scholar
  19. 19.
    G.H. Simon, M. Heyde, H.P. Rust, Recipes for cantilever parameter determination in dynamic force spectroscopy: spring constant and amplitude. Nanotechnology 18, 255503 (2007)Google Scholar
  20. 20.
    Y. Qin, R. Reifenberger, Measuring the interaction force between a tip and a substrate using a quartz tuning fork under ambient conditions. J. Nanosci. Nanotechnol. 6, 3455–3459 (2006)Google Scholar
  21. 21.
    R. Grober, et al., Fundamental limits to force detection using quartz tuning forks. Rev. Sci. Instrum. 71, 2776 (2000)Google Scholar
  22. 22.
    W.Rensen, et al., Atomic steps with tuning-fork-based noncontact atomic force microscopy. Appl. Phys. Lett. 75, 1640 (1999)Google Scholar
  23. 23.
    Y. Seo, P. Cadden-Zimansky, V. Chandrasekhar. Low-temperature high-resolution magnetic force microscopy using a quartz tuning fork. Appl. Phys. Lett. 87, 103103 (2005)Google Scholar
  24. 24.
    A. Castellanos-Gomez, N. Agrait, G. Rubio-Bollinger, Force-gradient-induced mechanical dissipation of quartz tuning fork force sensors used in atomic force microscopy. Ultramicroscopy 111(3), 186–190 (2011)Google Scholar
  25. 25.
    J. Rychen, et al., Force–distance studies with piezoelectric tuning forks below 4.2 K. Appl. Surf. Sci. 157(4), 290–294 (2000)Google Scholar
  26. 26.
    J.P. Cleveland, et al., A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy. Rev. Sci. Instrum. 64(2), 403–405 (1993)Google Scholar
  27. 27.
    H. Butt, M. Jaschke, Calculation of thermal noise in atomic force microscopy. Nanotechnology 6, 1–7 (1995)Google Scholar
  28. 28.
    R. Levy, M. Maaloum, Measuring the spring constant of atomic force microscope cantilevers: thermal fluctuations and other methods. Nanotechnology 3(1), 33–37 (2002)Google Scholar
  29. 29.
    A. Oral, et al., Quantitative atom-resolved force gradient imaging using noncontact atomic force microscopy. Appl. Phys. Lett. 79, 1915 (2001)Google Scholar
  30. 30.
    A. Valkering, et al., A force sensor for atomic point contacts. Rev. Sci. Instrum. 76, 103903 (2005)Google Scholar
  31. 31.
    A. Naber, The tuning fork as sensor for dynamic force distance control in scanning near-field optical microscopy. J. Microsc. 194(2), 307–310 (1999)Google Scholar
  32. 32.
    B. Ng, et al., Improve performance of scanning probe microscopy by balancing tuning fork prongs. Ultramicroscopy 109(4), 291–295 (2009)Google Scholar
  33. 33.
    J. Rychen, Combined low-temperature scanning probe microscopy and magneto-transport experiments for the local investigation of mesoscopic systems. Doktorarbeit, Swiss Federal Institute of Technology ETH Zürich, 2001Google Scholar
  34. 34.
    T. Arai, et al., Carbon tips as sensitive detectors for nanoscale surface and sub-surface charge. Nanotechnology 15(9), 1302–1306 (2004)Google Scholar
  35. 35.
    D. Rohlfing, A. Kuhn, Scanning tunneling microscopy of electrode surfaces using carbon composite tips. Electroanalysis 19, 121–128 (2007)Google Scholar
  36. 36.
    K. Yeong, C. Boothroyd, J. Thong, The growth mechanism and field-emission properties of single carbon nanotips. Nanotechnology 17(15), 3655–3661 (2006)Google Scholar
  37. 37.
    T. Glatzel, S. Sadewasser, M. Lux-Steiner, Amplitude or frequency modulation-detection in Kelvin probe force microscopy. Appl. Surf. Sci. 210(1–2), 84–89 (2003)Google Scholar
  38. 38.
    C. Nguyen, et al., Carbon nanotube tip probes: stability and lateral resolution in scanning probe microscopy and application to surface science in semiconductors. Nanotechnology 12, 363–367 (2001)Google Scholar
  39. 39.
    H. Konishi, et al., High-yield synthesis of conductive carbon nanotube tips for multiprobe scanning tunneling microscope. Rev. Sci. Instrum. 78(1), 013703–013706 (2007)Google Scholar
  40. 40.
    T. Uchihashi, et al., Quantitative measurement of solvation shells using frequency modulated atomic force microscopy. Nanotechnology 16(3), 49 (2005)Google Scholar
  41. 41.
    Y. Kahng, et al. The role of an amorphous carbon layer on a multi-wall carbon nanotube attached atomic force microscope tip in making good electrical contact to a gold electrode. Nanotechnology 19, 195705 (2008)Google Scholar
  42. 42.
    J. Buchoux, et al., Investigation of the carbon nanotube AFM tip contacts: free sliding versus pinned contact. Nanotechnology 20, 475701 (2009)Google Scholar
  43. 43.
    H. Wei, et al., Control of length and spatial functionality of single-wall carbon nanotube AFM nanoprobes. Chem. Mater. 20(8), 2793–2801 (2008)Google Scholar
  44. 44.
    M. Zhao, et al., Ultrasharp and high aspect ratio carbon nanotube atomic force microscopy probes for enhanced surface potential imaging. Nanotechnology 19, 235704 (2008)Google Scholar
  45. 45.
    P. Kim, et al., Efficient electrochemical etching method to fabricate sharp metallic tips for scanning probe microscopes. Rev. Sci. Instrum. 77(10), 103706–103715 (2006)Google Scholar
  46. 46.
    J. Sripirom, et al., Easily made and handled carbon nanocones for scanning tunneling microscopy and electroanalysis. Carbon 49, 2402 (2011)Google Scholar
  47. 47.
    T. Ohmori, et al., Characterization of carbon material as a scanning tunneling microscopy tip for in situ electrochemical studies. Rev. Sci. Instrum. 65(2), 404–406 (1994)Google Scholar
  48. 48.
    R. Smit, et al., A low temperature scanning tunneling microscope for electronic and force spectroscopy. Rev. Sci. Instrum. 78, 113705 (2007)Google Scholar
  49. 49.
    B. Ren, G. Picardi, B. Pettinger, Preparation of gold tips suitable for tip-enhanced Raman spectroscopy and light emission by electrochemical etching. Rev. Sci. Instrum. 75(4), 837–841 (2004)Google Scholar
  50. 50.
    E. Finot, A. Passian, T. Thundat. Measurement of mechanical properties of cantilever shaped materials. Sensors 8, 3497–3541(2008)Google Scholar
  51. 51.
    J. Yao, W. Yu, D. Pan. Tensile strength and its variation of PAN-based carbon fibers. III. Weak-link analysis. J. Appl. Polymer Sci. 110(6), 3778–3784 (2008)Google Scholar
  52. 52.
    D. Johnson, Structure-property relationships in carbon fibres. J. Phys. D: Appl. Phys. 20, 286–291 (1987)Google Scholar
  53. 53.
    U. Dürig, J. Gimzewski, D. Pohl, Experimental observation of forces acting during scanning tunneling microscopy. Phys. Rev. Lett. 57(19), 2403–2406 (1986)Google Scholar
  54. 54.
    S. Meepagala, F. Real, Detailed experimental investigation of the barrier-height lowering and the tip-sample force gradient during STM operation in air. Phys. Rev. B 49(15), 10761–10763 (1994)Google Scholar
  55. 55.
    J. Hahn, Y. Hong, H. Kang, Electron tunneling across an interfacial water layer inside an STM junction: tunneling distance, barrier height and water polarization effect. Appl. Phys. A: Mater. Sci. Process. 66, 467–472 (1998)Google Scholar
  56. 56.
    Y.A. Hong, J.R. Hahn, H. Kang, Electron transfer through interfacial water layer studied by scanning tunneling microscopy. J. Chem. Phys. 108, 4367 (1998)Google Scholar
  57. 57.
    W. Denk, D. Pohl, Local electrical dissipation imaged by scanning force microscopy. Appl. Phys. Lett. 59, 2171 (1991)Google Scholar
  58. 58.
    T. Stowe, et al., Silicon dopant imaging by dissipation force microscopy. Appl. Phys. Lett. 75, 2785 (1999)Google Scholar
  59. 59.
    C. Chen, Theory of scanning tunneling spectroscopy. J. Vacuum Sci. Tech. A 6(2), 319 (1988)Google Scholar
  60. 60.
    Z. Klusek. Scanning tunneling microscopy and spectroscopy of the thermally oxidized (0001) basal plane of highly oriented pyrolitic graphite. Appl. Surf. Sci. 125(3–4), 339–350 (1998)Google Scholar
  61. 61.
    Y.J. Yu, et al., Tuning the graphene work function by electric field effect. Nano Lett. 9, 351–355 (2010)Google Scholar
  62. 62.
    P. Ouseph, T. Poothackanal, G. Mathew. Honeycomb and other anomalous surface pictures of graphite. Phys. Lett. A 205(1), 65–71 (1995)Google Scholar
  63. 63.
    J.I. Paredes, A. Martinez-Alonso, J.M.D. Tascon. Triangular versus honeycomb structure in atomic-resolution STM images of graphite. Carbon 39(3), 476–479 (2001)Google Scholar
  64. 64.
    D. Tománek, et al., Theory and observation of highly asymmetric atomic structure in scanning-tunneling-microscopy images of graphite. Phys. Rev. B 35(14), 7790–7793 (1987)Google Scholar
  65. 65.
    R. Colton, et al., “Oxide-free” tip for scanning tunneling microscopy. Appl. Phys. Lett. 51, 305 (1987)Google Scholar
  66. 66.
    J. Rychen, et al., A low-temperature dynamic mode scanning force microscope operating in high magnetic fields. Rev. Sci. Instrum. 70, 2765 (1999)Google Scholar
  67. 67.
    S. Hembacher, et al., Local spectroscopy and atomic imaging of tunneling current, forces, and dissipation on graphite. Phys. Rev. Lett. 94(5), 056101 (2005)Google Scholar
  68. 68.
    N. Berdunov, A. Pollard, P. Beton. Dynamic scanning probe microscopy of adsorbed molecules on graphite. Appl. Phys. Lett. 94, 043110 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Andres Castellanos-Gomez
    • 1
  • Nicolás Agraït
    • 2
  • Gabino Rubio-Bollinger
    • 2
  1. 1.Kavli Institute of NanoscienceDelft University of TechnologyDelftthe Netherlands
  2. 2.Facultad de Ciencias, Dpto. Física de la Materia Condensada (C-III), Lab. 201MadridSpain

Personalised recommendations