Skip to main content

Bridging Nano- and Microtribology in Mechanical and Biomolecular Layers

  • Chapter
  • First Online:
Scanning Probe Microscopy in Nanoscience and Nanotechnology 3

Part of the book series: NanoScience and Technology ((NANO))

  • 2408 Accesses

Abstract

The physical and chemical composition of surfaces determine various important properties of solids such as corrosion rates, adhesive properties, frictional properties, catalytic activity, wettability, contact potential and – finally and most importantly – failure mechanisms. Very thin, weak layers (of man-made and biological origin) on much harder substrates that reduce friction are the focus of the micro- and nanotribological investigations presented in this chapter.Biomolecular layers fulfil various functions in organs of the human body. Examples comprise the skin that provides a protective physical barrier between the body and the environment, preventing unwanted inward and outward passage of water and electrolytes, reducing penetration by destructive chemicals, arresting the penetration of microorganisms and external antigens and absorbing radiation from the sun, or the epithelium of the cornea that blocks the passage of foreign material, such as dust, water and bacteria, into the eye and that contributes to the lubrication layer that ensures smooth movement of the eyelids over the eyeballs.Monomolecular thin films, additive-derived reaction layers and hard coatings are widely used to tailor tribological properties of surfaces. Nanotribological investigations on these substrates can reveal novel properties regarding the orientation of chemisorbed additive layers, development of rubbing films with time and the relation of frictional properties to surface characteristics in diamond coatings.Depending on the questions to be answered with the tribological research, various micro- and nanotribological measurement methods are applied, including scanning probe microscopy (AFM, FFM), scanning electron microscopy, microtribometer investigations, angle-resolved photoelectron spectroscopy and optical microscopy. Thoughts on the feasibility of a unified approach to energy-dissipating systems and how it might be reached (touching upon new ways of scientific publishing, dealing with over-information regarding the literature and the importance of specialists as well as generalists in tribology) conclude this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. J.A. Greenwood, J.B.P. Williamson, Contact of nominally flat surfaces, Proc. Roy. Soc. Lond. A295, 300–319 (1966)

    Google Scholar 

  2. D. Tabor, Junction growth in metallic friction, Proc. Roy. Soc. Lond. A259, 378–393 (1959)

    Google Scholar 

  3. G.W. Stachowiak, A.W. Batchelor, in Engineering Tribology, 2nd edn. (Butterworth-Heinemann, Boston, 2001)

    Google Scholar 

  4. B. Bhushan, in Handbook of Nanotechnology, 2nd edn. (Springer, Berlin, 2003)

    Google Scholar 

  5. S. Bec, A. Tonck, J.M. Georges, R.C. Coy, J.C. Bell, G.W. Roper, A relationship between mechanical properties and structures of zinc dithiophosphate anti-wear films, Proc. Roy. Soc. Lon. 455, 4181–4203 (1999)

    Google Scholar 

  6. P.A. Willermet, D.P. Dailey, R.O. Carter, P.J. Schmitz, W. Zhu, Mechanism of formation of antiwear films from zinc dialkyldithiophosphates, Tribol. Int. 28(3), 177–187 (1995)

    Google Scholar 

  7. H. Spedding, R.C. Watkins, Antiwear mechanism of ZDDP’s—1, Tribol. Int. 15(1), 9–12 (1982)

    Google Scholar 

  8. G.M. Bancroft, M. Kasrai, M. Fuller, Z. Yin, Mechanism of tribochemical film formation: Stability of tribo- and thermally-generated ZDDP films, Tribol. Lett. 3, 47–51 (1997)

    Google Scholar 

  9. P.A. Willermet, D.P. Dailey, R.O. Carter III, P.J. Schmitz, W. Zhu, J.C. Bell, D. Park, The composition of lubricant-derived surface layers formed in a lubricated cam/tappet contact II. Effects of adding overbased detergent and dispersant to a simple ZDTP solution, Tribol. Int. 28, 163–175 (1995)

    Google Scholar 

  10. J.S. Sheasby, Z. Nisenholz Rafael, Antiwear characteristics of a commercial secondary ZDDP additives, Tribol. Transact. 36, 399–401 (1933)

    Google Scholar 

  11. J.F. Graham, C. McCague, P.R. Norton, Topography and nanomechanical properties of tribochemical films derived from zinc dialkyl and diaryl dithiophosphates, Tribol. Lett. 6, 149–157 (1999)

    Google Scholar 

  12. B. Bhushan, in Modern Tribology Handbook. Material Coatings, and Industrial Applications, Vol. 2, 1st edn. (CRC Press LLC, Boca Raton, 2001)

    Google Scholar 

  13. M. Marieb, Human Anatomy and Physiology, 3rd edn. (Benjamin/Cummings, Redwood City, 1995)

    Google Scholar 

  14. J.A. Eurell, B.L. Frappier, Dellmann’s Textbook of Veterinary Histology, 6th edn. (Wiley/Blackwell, Ames, 2006)

    Google Scholar 

  15. W. Ming, Lasik Vision Correction (Med World Publishing, Provo, 2000)

    Google Scholar 

  16. H. Kawano, H. Yasue, A. Kitagawa, N. Hirai, T. Yoshida, H. Soejima, S. Miyamoto, M. Nakano, H. Ogawa, Dehydroepiandrosterone supplementation improves endothelial function and insulin sensitivity in men, J. Clin. Endocrinol. Metab. 88, 3190–3195 (2003)

    Google Scholar 

  17. O. Marti, J. Colchero, J. Mlynek, Nanosources and manipulation of atoms under high fields and temperatures, Nanotechnology 1, 253–260 (1991)

    Google Scholar 

  18. G. Mayer, N.M. Amer, Simultaneous measurement of lateral and normal forces with an optical-beam-deflection atomic force microscope, Appl. Phys. Lett. 57(20), 2089–2095 (1990)

    Google Scholar 

  19. B. Bhushan, Nanotribology and Nanomechanics—An Introduction, 2nd edn. (Springer, Berlin, 2005)

    Google Scholar 

  20. B.D. Beake, I.U. Hassan, C.A. Rego, W. Ahmed, Friction force microscopy study of diamond films modified by a glow discharge treatment, Diamond Rel. Mat. 9, 1421–1429 (2000)

    Google Scholar 

  21. D.F. Ogletree, R.W. Carpick, M. Salmeron, Calibration of frictional forces in atomic force microscopy, Rev. Sci. Instrum. 67(9), 3298–3306 (1996)

    Google Scholar 

  22. E. Tocha, H. Schonherr, G. Vancso, Calibration of frictional forces in atomic force microscopy, Langmuir 22(5), 2340–2350 (2006)

    Google Scholar 

  23. M. Indrieri, A. Podestà, G. Bongiorno, D. Marchesi, P. Milani, Adhesive-free colloidal probes for nanoscale force measurements: Production and characterization, Rev. Sci. Instrum. 82, 023708 (2011)

    Google Scholar 

  24. H. Oechsner (ed.), Thin Film and Depth Profile Analysis. Topics in Current Physics, Vol. 37 (Springer, Berlin, Heidelberg, New York, Tokyo, 1984)

    Google Scholar 

  25. R. Behrisch (ed.), Sputtering by Particle Bombardment. Topics in Applied Physics, Vol. 47 (Springer, Berlin, 1981)

    Google Scholar 

  26. A. Tomala, C.A. Vasko, N. Dörr, H. Störi, I.C. Gebeshuber, Oligomer specific lubrication, Proceedings of the 34th Leeds-Lyon Symposium on Tribology, Vol. 30, Lyon, 2007, pp. 2–3

    Google Scholar 

  27. A. Tomala, W.S.M. Werner, I.C. Gebeshuber, N. Dörr, H. Störi, Tribochemistry of monomolecular lubricant films of ethanolamine oligomers, Tribol. Int. 42, 1513–1518 (2009)

    Google Scholar 

  28. A. Tomala, A. Naveira-Suarez, R. Pasaribu, N. Doerr, W.S.M. Werner, H. Stoeri, Behavior of corrosion inhibitors under different tribological contact, Tribol. Lett. 45, 397–409 (2012)

    Google Scholar 

  29. A. Naveira-Suarez, A. Tomala, R. Pasaribu, R. Larsson, I.C. Gebeshuber, Evolution of ZDDP-derived reaction layer morphology with rubbing time, Scanning 31, 1–10 (2010)

    Google Scholar 

  30. H. Fujita, H.A. Spikes, The formation of zinc dithiophosphate antiwear films, Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 218(4), 265–277 (2004).

    Google Scholar 

  31. A. Naveira-Suarez, A. Tomala, M. Grahn, M. Zaccheddu, R. Pasaribu, R. Larsson, The influence of base oil polarity and slide-roll ratio on additive-derived reaction layer formation, Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 225(7), 565–576 (2011)

    Google Scholar 

  32. M. Aktary, M.T. McDermott, G.A. McAlpine, Morphology and nanomechanical properties of ZDDP antiwear films as a function of tribological contact time, Tribol. Lett. 12(3), 155–162 (2002)

    Google Scholar 

  33. K.A. Dean, B.R. Chalamala, Current saturation mechanisms in carbon nanotube field emitters, Appl. Phys. Lett. 76, 375 (2000)

    Google Scholar 

  34. T. Zehnder, J. Patscheider, Nanocomposite TiC/a-C:H hard coatings. Deposited by reactive PVD, Surf. Coat. Technol. 138, 133–134 (2000)

    Google Scholar 

  35. L.C. Wu, K. Miyoshi, R. Vuppuladhadium, H.E. Jackson, Physical and tribological properties of rapid thermal annealed diamond-like carbon films, Surf. Coat. Technol. 54–55, 576–580 (1992)

    Google Scholar 

  36. R. Haubner, B. Lux, Diamond growth by hot-filament CVD: State of the art, Diamond Rel. Mat. 2, 1277–1294 (1993)

    Google Scholar 

  37. K. Miyoshi, R.L.C. Wu, A. Garscadden, Friction and wear of diamond and diamondlike carbon coatings, Surf. Coat. Technol. 54/55, 428–434 (1992)

    Google Scholar 

  38. J. Robertson, Diamond-like amorphous carbon, Mat. Sci. Eng. R37, 129–281 (2002)

    Google Scholar 

  39. P. Ovaere, S. Lippens, P. Vandenabeele, W. Declercq, The emerging roles of serine protease cascades in the epidermis, Trends Biochem. Sci. 34(9), 453–463 (2009)

    Google Scholar 

  40. M. Haftek, S. Callejon, Y. Sandjeu, K. Padois, F. Falson, F. Pirot, P. Portes, F. Demarne, V. Jannin, Compartmentalization of the human stratum corneum by persistent tight junction-like structures, Exp. Dermatol. 20(8), 617–621 (2011)

    Google Scholar 

  41. T. Igarashi, K. Nishino, S.K. Nayar, The appearance of the human skin: A survey, Found. Trends Comp. Graph. Vis. 3(1), 1–95 (2007)

    Google Scholar 

  42. I.H. Blank, D.J. McAuliffe, Penetration of benzene through human skin, J. Invest. Dermatol. 85, 522–526 (1985)

    Google Scholar 

  43. C. Soussen, D. Brie, C. Goboriaud, C. Kessler, Modelling of force volume images in atomic force microscopy, in 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, IEEE, Paris, 2008, pp. 1605–1608

    Google Scholar 

  44. B. Bhushan, in Handbook of Micro and Nano Tribology (CRC Press, Boca Raton, 1999)

    Google Scholar 

  45. G. Meyer, N.M. Amer, Simultaneous measurement of lateral and normal forces with an optical—beam—deflection atomic force microscope, Appl. Phys. Lett. 57(20), 2089–2091 (1990)

    Google Scholar 

  46. M. Labardi, M. Allegrini, M. Salerno, C. Frediani, C. Ascoli, Dynamical friction coefficient maps using a scanning force and friction microscope, Appl. Phys. A Solids Surf. 59, 3–10 (1994)

    Google Scholar 

  47. S. Sundararajan, B. Bushan, Topography-induced contributions to friction forces measured using an atomic force/friction force microscope, J. Appl. Phys. 88, 4825 (2000)

    Google Scholar 

  48. A. Podestà, G. Fantoni, P. Milani, Quantitative nanofriction characterization of corrugated surfaces by atomic force microscopy, Rev. Sci. Instrum. 75(5), 1228–1241 (2004)

    Google Scholar 

  49. F. Bowden, D. Tabor, in The Friction and Lubrication of Solids (Clarendon, Oxford, 1950)

    Google Scholar 

  50. A.C. Dunn, T.D. Zaveri, B.G. Keselowsky, W.G. Sawyer, Macroscopic friction coefficient measurements on living endothelial cells, Tribol. Lett. 27, 233–238 (2007)

    Google Scholar 

  51. J.A. Cobb, A.C. Dunn, J. Kwon, M. Sarntinoranont, W.G. Sawyer, R. Tran-Son-Tay, A novel method for low load friction testing on living cells, Biotechnol. Lett. 30, 801–806 (2008)

    Google Scholar 

  52. F.H. Kruszewski, T.L. Walker, L.C. Dipasquale, Evaluation of a human corneal epithelial cell line as an in vitro model for assessing ocular irritation, Toxicol. Sci. 36(2), 130–140 (1997)

    Google Scholar 

  53. B. Bhushan, M. Nosonovsky, Scale effects in mechanical properties and tribology, in Nanotribology and Nanomechanics—An Introduction, 2nd edn., ed. by B. Bhushan (Springer, Berlin, 2008), pp. 791–840

    Google Scholar 

  54. M. Urbakh, J. Klafter, D. Gourdon, J. Israelachvili, The nonlinear nature of friction, Nature 430, 525–528 (2004)

    Google Scholar 

  55. I.C. Gebeshuber, B.Y. Majlis, New ways of scientific publishing and accessing human knowledge inspired by transdisciplinary approaches, Tribol. Surf. Mat. Interf. 4(3), 143–151 (2010)

    Google Scholar 

  56. J. Sandweiss, Essay: The future of scientific publishing, Phys. Rev. Lett. 102(19), 190001(2p) (2009)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the European Commission for supporting part of this work through their WEMESURF Marie Curie Research Training Network. The National University of Malaysia (Universiti Kebangsaan Malaysia) funded part of this work with its leading-edge research project scheme ‘Arus Perdana’.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tomala, A., Göçerler, H., Gebeshuber, I.C. (2012). Bridging Nano- and Microtribology in Mechanical and Biomolecular Layers. In: Bhushan, B. (eds) Scanning Probe Microscopy in Nanoscience and Nanotechnology 3. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25414-7_16

Download citation

Publish with us

Policies and ethics