Reconstruction of Energy Surfaces from Friction Force Microscopy Measurements with the Jarzynski Equality

Part of the NanoScience and Technology book series (NANO)


Free energy is one of the most fundamental thermodynamic functions, determining relative phase stability and serving as a generating function for other thermodynamic quantities. The calculation of free energies is a challenging enterprise. In equilibrium statistical mechanics, the free energy is related to the canonical partition function. The partition function itself involves integrations over all degrees of freedom in the system and, in most cases, cannot be easily calculated directly. In 1997, Jarzynski proved a remarkable equality that allows computing the equilibrium free-energy difference between two states from the probability distribution of the nonequilibrium work done on the system to switch between the two states. The Jarzynski equality provides a powerful free-energy difference estimator from a set of irreversible experiments. This method is closely related to free-energy perturbation approach, which is also a computational technique for estimating free-energy differences. The ability to map potential profiles and topologies is of major significance to areas as diverse as biological recognition and nanoscale friction. This capability has been demonstrated for frictional studies where a force between the tip of the scanning force microscope and the surface is probed. The surface free-energy corrugation produces a detectable friction forces. Thus, friction force microscopy (FFM) should be able to discriminate between energetically different areas on the probed surface. Here, we apply the Jarzynski equality for the analysis of FFM measurements and thus obtain a variation of the free energy along a surface.


Helmholtz Free Energy Periodic Potential Rupture Force Single Asperity Force Trace 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R.W. Zwanzig, NonequilibriumStatistical Mechanics (Oxford University Press, New York, 2001)Google Scholar
  2. 2.
    C.M. Mate, G.M. McClelland, R. Erlandsson, S.Chiang, Atomic-scale friction of a tungsten tip on a graphite surface. Phys. Rev. Lett. 59, 1942–1945 (1987)Google Scholar
  3. 3.
    T. Bouhacina, J.P. Aimé, S. Gauthier, D. Michel, V. Heroguez Tribological behavior of a polymer grafted on silanized silica probed with a nanotip. Phys. Rev. B 56, 7694–7703 (1997)Google Scholar
  4. 4.
    E. Gnecco, R. Bennewitz, T. Gyalog, C. Loppacher, M. Bammerlin, E. Meyer, H.-J. Güntherodt, Velocity dependence of atomic friction. Phys. Rev. Lett. 84, 1172–1175 (2000)Google Scholar
  5. 5.
    D. Tománek, W. Zhong, H. Thomas Calculation of an atomically modulated friction force in atomic-force microscopy. Europhys. Lett. 15, 887–892 (1991)Google Scholar
  6. 6.
    T. Gyalog, M. Bammerlin, R. Lüthi, E. Meyer, H. Thomas, Mechanism of atomic friction. Europhys. Lett. 31, 269–274 (1995)Google Scholar
  7. 7.
    T. Gyalog, H. Thomas Atomic friction Z. Phys. B 104, 669–674 (1997)Google Scholar
  8. 8.
    J.S. Helman, W. Baltensperger, J.A. Holyst Simple model for dry friction Phys. Rev. B 49, 3831–3838 (1994)Google Scholar
  9. 9.
    H. Hölscher, U.D. Schwarz, R. Wiesendanger Simulation of a scanned tip on a NaF(001) surface in friction force microscopy. Europhys. Lett. 36, 19–24 (1996)Google Scholar
  10. 10.
    O. Zwörner, H. Hölscher, U.D. Schwarz, R. Wiesendanger The velocity dependence of frictional forces in point contact friction Appl. Phys. A66, S263 (1998)Google Scholar
  11. 11.
    G.A. Tomlinson A molecular theory of friction Philos. Mag., Ser. 7, 905–939 (1929)Google Scholar
  12. 12.
    M. Rief, F. Oesterhelt, B. Heymann, H.E. Gaub Single molecule force spectroscopy on polysaccharides by atomic force microscopy Science 275, 1295–1297(1997)Google Scholar
  13. 13.
    M. Rief, J.M. Fernandez, H. Gaub, Elastically coupled two-level systems as a model for biopolymer extensibility. Phys. Rev. Lett. 81, 4764–4767 (1998)Google Scholar
  14. 14.
    R. Merkel, P. Nassoy, A. Leung, K. Ritchie, E. Evans, Energy landscapes of receptor–ligand bonds explored with dynamic force spectroscopy. Nature 397, 50–53 (1999)Google Scholar
  15. 15.
    J. Liphardt, S. Dumont, S. B. Smith, I. Tinoco Jr, C. Bustamante, Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski’s equality. Science 296, 1832–1835 (2002)Google Scholar
  16. 16.
    M.T. Woodside, P.C. Anthony, W.M. Behnke-Parks, K. Larizadeh, D. Herschlag, S.M. Block Direct measurement of the full, sequence-dependent folding landscape of a nucleic acid Science 314, 1001–1004 (2006)Google Scholar
  17. 17.
    E.L. Florin, V.T. Moy, H.E. Gaub Adhesion forces between individual ligand-receptor pairs Science 264 415–417 (1994)Google Scholar
  18. 18.
    R. Nevo, C. Stroh, F. Keinberger, D. Kaftan, V. Brumfeld, M. Elbaum, Z. Reich, P. Hinterdorfer, A molecular switch between alternative conformational states in the complex of Ran and importin β1. Nat. Struct. Biol. 10, 553–557 (2003)Google Scholar
  19. 19.
    F. Oesterhelt, D. Oesterhelt, M. Pfeiffer, A. Engel, H.E. Gaub, D.J. Muller Unfolding pathways of individual bacteriorhodopsins Science 288, 143–146 (2000)Google Scholar
  20. 20.
    J. Brujic, Z.R.I. Hermans, K.A. Walter, J.M. Fernandez Single-molecule force spectroscopy reveals signatures of glassy dynamics in the energy landscape of ubiquitin Nat Phys 2 282–286 (2006)Google Scholar
  21. 21.
    Y. Cui, C. Bustamante, Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure. Proc. Natl. Acad. Sci. U S A 97, 127–132 (2000)Google Scholar
  22. 22.
    M. Manosas, F. Ritort, Thermodynamic and kinetic aspects of RNA pulling experiments. Biophys. J. 88, 3224–3242 (2005)Google Scholar
  23. 23.
    O.K. Dudko, A.E. Filippov, J. Klafter, M. Urbakh, Dynamic force spectroscopy: a Fokker-Planck approach. Chem. Phys. Lett. 352, 499–504 (2002)Google Scholar
  24. 24.
    M.H. Muser, M. Urbakh, M.O. Robbins, Statistical mechanics of static and low-velocity kinetic friction. Adv. Chem. Phys. 126, 187–272 (2003)Google Scholar
  25. 25.
    M. Urbakh, J. Klafter, D. Gourdon, J. Israelachvili, The nonlinear nature of friction. Nature 430, 525–528 (2004)Google Scholar
  26. 26.
    C. Jarzynski, Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78, 2690–2693 (1997)Google Scholar
  27. 27.
    C. Jarzynski, Equilibrium free-energy differences from nonequilibrium measurements: a master-equation approach. Phys. Rev. E. 56, 5018–5035 (1997)Google Scholar
  28. 28.
    G. Hummer, A. Szabo Free energy reconstruction from nonequilibrium single-molecule pulling experiments Proc. Natl. Acad. Sci. U S A 98, 3658–3661 (2001)Google Scholar
  29. 29.
    N.C. Harris, Y. Song, C.H. Kiang, Experimental free energy surface reconstruction from single-molecule force spectroscopy using Jarzynski’s equality. Phys. Rev. Lett. 99, 068101/1-4 (2007)Google Scholar
  30. 30.
    H.J. Kreuzer, S.H. Payne, L. Livadaru, Stretching a macromolecule in an atomic force microscope: statistical mechanical analysis. Biophys. J. 80, 2505–2514 (2001)Google Scholar
  31. 31.
    O. Braun, A. Hanke, U. Seifert, Probing molecular free energy landscapes by periodic loading. Phys. Rev. Lett. 93, 158105/1-4 (2004)Google Scholar
  32. 32.
    S. Park, K. Schulten, Calculating potentials of mean force from steered molecular dynamics simulations. J. Chem. Phys. 120, 5946–5961 (2004)Google Scholar
  33. 33.
    D.D.L. Minh, Free-energy reconstruction from experiments performed under different biasing programs. Phys. Rev. Lett. E. 74, 061120/1-4 (2006)Google Scholar
  34. 34.
    A. Imparato, L. Peliti, Evaluation of free energy landscapes from manipulation experiments. J. Stat. Mech., P03005 (2006)Google Scholar
  35. 35.
    J. Preiner, H. Janovjak, C. Rankl, H. Knaus, D.A. Cisneros, A. Kedrov, F. Kienberger, D.J. Muller, P. Hinterdorfer, Free energy of membrane protein unfolding derived from single-molecule force measurements. Biophys. J. 93, 930–937 (2007)Google Scholar
  36. 36.
    O.K. Dudko, A.E. Filippov, J. Klafter, M. Urbakh, Beyond the conventional description of dynamic force spectroscopy of adhesion bonds. Proc. Natl. Acad. Sci. USA 100, 11378–11381 (2003)Google Scholar
  37. 37.
    E. Gnecco, R. Bennewitz, A. Socoliuc, E. Meyer Friction and wear on the atomic scale Wear 254, 859–862 (2003)Google Scholar
  38. 38.
    R.W. Zwanzig, High-temperature equation of state by a perturbation method. i. nonpolar gases. J. Chem. Phys. 22, 1420–1426 (1954)Google Scholar
  39. 39.
    G. Hummer, Fast-growth thermodynamic integration: error and efficiency analysis. J. Chem. Phys. 114, 7330–7337 (2001)Google Scholar
  40. 40.
    C. Jarzynski, Rare events and the convergence of exponentially averaged work values, Phys. Rev. E. 73, 046105/1-10 (2006)Google Scholar
  41. 41.
    R. Berkovich, J. Klafter, M. Urbakh, Analyzing friction forces with the Jarzynski equality. J. Phys.: Condens. Matter 20, 345008/1-7 (2008)Google Scholar
  42. 42.
    A.B. Adib, D.D.L. Minh, Optimized free energies from bidirectional single-molecule force spectroscopy. Phys. Rev. Lett. 100, 180602/1-4 (2008)Google Scholar
  43. 43.
    A. Socoliuc, R. Bennewitz, E. Gnecco, E. Meyer, Transition from stick-slip to continuous sliding in atomic friction: entering a new regime of ultralow friction. Phys. Rev. Lett. 92, 134301/1-4 (2004)Google Scholar
  44. 44.
    K. Pesz, B.J. Gabrys, S.J. Bartkiewicz, Analytical solution for the Feynman ratchet. Phys. Rev. Lett. E. 66, 061103/1-7 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Biological SciencesColumbia UniversityNew YorkUSA
  2. 2.Orenstein 209, School of ChemistryTel-Aviv UniversityTel AvivIsrael
  3. 3.Orenstein 207, School of ChemistryTel-Aviv UniversityTel AvivIsrael

Personalised recommendations