Investigation of Nanopatterned Functional Polymer Surfaces by AFM in Pulsed Force Mode

  • Olivier Soppera
  • Ali Dirani
  • Safi Jradi
  • Vincent Roucoules
  • Hamidou Haidara
Part of the NanoScience and Technology book series (NANO)


Achieving topography and chemistry control at the nanoscale of polymer surfaces constitutes a highly challenging objective in nanotechnology. Advances in this field suppose the development of characterization methodology with sub-100-nm resolution. Many imaging techniques based on scanning probe microscopy (SPM) were recently developed to achieve this goal [1]. Among them, pulsed force mode (PFM) atomic force microscopy (AFM), which has been proposed firstly by Marti [2], is still a method of interest since this nonresonant mode designed to allow approach curves being recorded along the scanning path provides the topography of the sample and a direct and simple local characterization of adhesion and stiffness.This chapter is aimed at demonstrating the interest of this technique to investigate polymer surfaces patterned with photochemical methods. Both topography and chemical contrast at the sub-100-nm scale can be probed, which gives new insights into photoinduced processes at the nanoscale.After an introduction focusing on the main techniques used for the analysis of the chemical contrast at micro- and nanopatterned polymer surfaces, the first part will deal with the utility of AFM in the investigation of photopolymer surfaces.In the second part, the principle of PFM and its interest in polymer surface analysis will be detailed.The third part will focus on a recent application dealing with the nanopatterning of plasma polymer surfaces using DUV photolithography techniques. Analysis of interactions between the AFM tip and the polymer surface allows acquiring relevant information on the light-induced modifications at the nanoscale.


Atomic Force Microscopy Polymer Surface Plasma Polymer Holographic Data Storage Dropwise Condensation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    B. Bhushan, Measurement techniques and applications, in Handbook of Micro/Nano Tribology, ed. by B. Bhushan (CRC Press, London, 1999), p. 49Google Scholar
  2. 2.
    A. Rosa-Zeiser, E. Weilandt, S. Hild, O. Marti, Meas. Sci. Technol. 8, 1333–1338 (1997)Google Scholar
  3. 3.
    E. Selli, I.R. Bellobono, Photopolymerization of multifunctional monomers: Kinetic aspects, in Radiation Curing in Polymer Science and Technology, Polymerisation Mechanisms, Vol. III, ed. by J.P. Fouassier, J.F. Rabek, (Elsevier, London, 1993), p. 1–32Google Scholar
  4. 4.
    C. Decker, New developments in UV-curable acrylic monomers, in Radiation Curing in Polymer Science and Technology, Polymerisation Mechanisms, Vol. III, ed. by J.P. Fouassier, J.F. Rabek, (Elsevier, London, 1993), pp. 33–64Google Scholar
  5. 5.
    D.J. Lougnot, Photopolymers and holography, in Radiation Curing in Polymer Science and Technology, Polymerisation Mechanisms, Vol. III, ed. by J.P. Fouassier, J.F. Rabek, (Elsevier, London, 1993), pp. 65–100Google Scholar
  6. 6.
    F. Guattari, G. Maire, K. Contreras, C. Arnaud, G. Pauliat, G. Roosen, S. Jradi, C. Carré, Opt. Express 15, 2234–2243 (2007)Google Scholar
  7. 7.
    C. Carré, P. Saint-Georges, C. Lenaerts, Y. Renotte, Synth. Met. 127(1–3), 291–294 (2002)Google Scholar
  8. 8.
    C. Croutxé-Barghorn, O. Soppera, D.J. Lougnot, Appl. Surf. Sci. 168, 89–91 (2000)Google Scholar
  9. 9.
    H. Ibn El Ahrach, R. Bachelot, A. Vial, A.-S. Grimault, G. Lérondel, J. Plain, P. Royer, O. Soppera, Phys. Rev. Lett. 98, 107402(1–4) (2007)Google Scholar
  10. 10.
    Y. Martin, H.K. Wickramasinghe, Appl. Phys. Lett. 64(19), 2498–2500 (1994)Google Scholar
  11. 11.
    N.A. Burnham, R.J. Colton, H.M. Pollock, Nanotechnology 4, 64–80 (1993)Google Scholar
  12. 12.
    J.P. Aime, Z. Elkaakour, C. Odin, T. Bouhacina, D. Michel, J. Curely, A. Dautant, J. Appl. Phys. 77, 754–762 (1994)Google Scholar
  13. 13.
    O.K.C. Tsui, X.P. Wang, J.Y.L. Ho, X. Xiao, Macromolecules 33, 4198–4204 (2000)Google Scholar
  14. 14.
    X.P. Wang, X. Xiao, O.K.C. Tsui, Macromolecules 34(12), 4180–4185 (2001)Google Scholar
  15. 15.
    B. Cappella, S.K. Kaliappan, H. Sturm, Macromolecules 38, 1874–1881 (2005)Google Scholar
  16. 16.
    P.J. Eaton, P. Graham, J.R. Smith, J.D. Smart, T.G. Nevell, J. Tsibouklis, Langmuir 16(21), 7887–7890 (2000)Google Scholar
  17. 17.
    K.G. Yager, C.J. Barrett, Macromolecules 39(26), 9320–9326 (2006)Google Scholar
  18. 18.
  19. 19.
    M. Csete, N. Kresz, C. Vass, G. Kurdi, Z. Heiner, M. Deli, Z. Bor, O. Marti, Mat. Sci. Eng. C 25, 813–819 (2005)Google Scholar
  20. 20.
    M. Csete, J. Kokavecz, Z. Bor, O. Marti, Mat. Sci. Eng. C 23, 939–944 (2003)Google Scholar
  21. 21.
    O. Soppera, M. Feuillade, C. Croutxé-Barghorn, C. Carré, Prog. Solid State Chem. 34(2–4), 87–94 (2006)Google Scholar
  22. 22.
    C.A. Rezende, L.-T. Lee, F. Galembeck, Langmuir 25(17), 9938–9946 (2009)Google Scholar
  23. 23.
    C. Zhao, M. Burchardt, T. Brinkhoff, C. Beardsley, M. Simon, G. Wittstock, Langmuir 26(11), 8641–8647 (2010)Google Scholar
  24. 24.
    K. Deng, M.A. Winnik, N. Yan, Z. Jiang, P.V. Yaneff, R.A. Ryntz, Polymer 50, 3225–3233 (2009)Google Scholar
  25. 25.
    C.T. Gibson, G.S. Watson, S. Myhra, Scanning 19, 564 (1997)Google Scholar
  26. 26.
    F. Iwata, T. Matsumoto, A. Sasaki, Nanotechnology 11, 10 (2000)Google Scholar
  27. 27.
    Y. Defosse, C. Carré, D.J. Lougnot, Pure Appl. Opt. 2, 437–440 (1993)Google Scholar
  28. 28.
    C. Carré, P. Saint-Georges, G. Pauliat, Proc. SPIE 5464, 345–350 (2004)Google Scholar
  29. 29.
    S. Jradi, C. Croutxé-Barghorn, C. Carré, Proc. SPIE 5827, 410–417 (2005)Google Scholar
  30. 30.
    O. Soppera, S. Jradi, D.J. Lougnot, J. Polym. Sci. Part A: Polym. Chem. 46(11), 3783–3794 (2008)Google Scholar
  31. 31.
    O. Soppera, S. Jradi, C. Ecoffet, D.J. Lougnot, Nanoengineering: Fabrication, properties, optics and devices IV, Proc. SPIE 6647, 6647OI (2007)Google Scholar
  32. 32.
    C. Deeb, C. Ecoffet, R. Bachelot, J. Plain, A. Bouhelier, O. Soppera, J. Am. Chem. Soc. 133(27), 10535–10542 (2011)Google Scholar
  33. 33.
    C. Deeb, R. Bachelot, J. Plain, A.L. Baudrion, S. Jradi, A. Bouhelier, O. Soppera, P.K. Jain, L.B. Huang, C. Ecoffet, L. Balan, P. Royer, ACS Nano 4(8), 4579–4586 (2010)Google Scholar
  34. 34.
    S. Jradi, O. Soppera, D.J. Lougnot, J. Microscopy 229(1), 151–161 (2008)Google Scholar
  35. 35.
    J.E. Dietz, N.A. Peppas, Polymer 38(15), 3767–3781 (1997)Google Scholar
  36. 36.
    R.L. Bowen, J. Am. Dent. Assoc. 66, 57–64 (1963)Google Scholar
  37. 37.
    M. Braem, P. Lambrechts, G. Vanherle, C.L. Davidson, J. Dent. Res. 66, 1713–1716 (1987)Google Scholar
  38. 38.
    B.S. Dauvillier, A.J. Feilzer, A.J. De Gee, C.L. Davidson, J. Dent. Res. 79, 818–823 (2000)Google Scholar
  39. 39.
    H.V. Boening, Fundamental of Plasma Chemistry and Technology, (Technomic Publishing Company, Inc., Lancaster, 1988), p. 75; H. Yasuda, Plasma Polymerization, (Academic, London, 1985)Google Scholar
  40. 40.
    V. Roucoules, A. Ponche, F. Siffer, U. Ergurrolla, M.F. Vallat, J. Adhes. 83, 875–895 (2007)Google Scholar
  41. 41.
    D.O.H. Teare, C. Spanos, P. Ridley, E.J. Kinmond, V. Roucoules, J.P.S. Badyal, Chem. Mater. 14, 4566–4571 (2002)Google Scholar
  42. 42.
    H. Yasuda, Y. Matsuzawa, Plasma Process. Polym. 2, 507–512 (2005)Google Scholar
  43. 43.
    O. Soppera, A. Dirani, A. Ponche, V. Roucoules, Nanotechnology 19, 395304–395312 (2008)Google Scholar
  44. 44.
    A. Geissler, M.F. Vallat, L. Vidal, J.C. Voegel, J. Hemmerlé, P. Schaaf, V. Roucoules, Langmuir 24, 4874–4880 (2008)Google Scholar
  45. 45.
    A.L. Weisenhorn, P.K. Hansma, T.R. Albrecht, C.F. Quate, Appl. Phys. Lett. 54(26), 2651–2653 (1989)Google Scholar
  46. 46.
    S. Sakrani, L.Q. Jie, Y.J. Wahab, Fund. Sci. 1(1), 23–33 (2005)Google Scholar
  47. 47.
    M. Paajanen, J. Katainen, O.H. Pakarimen, A.S. Foster, J.J. Lahtinen, Coll. Int. Sci. 304, 518–523 (2006)Google Scholar
  48. 48.
    S. Biggs, P.J. Mulvaney, Chem. Phys. 100(11), 8501–8505 (1994)Google Scholar
  49. 49.
    T. Eastman, D.M. Zhu, Langmuir 12, 2859–2862 (1996)Google Scholar
  50. 50.
    Y.I. Rabinovich, M.S. Esayanur, B.M. Moudgil, Langmuir 21, 10992–10997 (2005)Google Scholar
  51. 51.
    D.A. Grigg, P.E. Russell, Vac. Sci. Technol. A 10(4), 680–683 (1992)Google Scholar
  52. 52.
    A. Noy, D.V. Vezenov, C.M. Lieber, Annu. Rev. Mater. Sci. 27, 381–421 (1997)Google Scholar
  53. 53.
    Z. Xiong, G.D. Peng, B. Wu, P.L. Chu, J. Lightwave Technol. 17(11) 2361 (1999)Google Scholar
  54. 54.
    A. Dirani, F. Wieder, V. Roucoules, A. Airoudj, O. Soppera, Plasma Process. Polym. 7, 571–581 (2010)Google Scholar
  55. 55.
    F. Siffer, A. Ponche, P. Fioux, J. Schultz, V. Roucoules, Anal. Chim. Acta. 539, 289–299 (2005)Google Scholar
  56. 56.
    K. Mougin, H. Haidara, Europhys. Lett. 61(5), 660–666 (2003)Google Scholar
  57. 57.
    O. Soppera, S. Jradi, D.J. Lougnot, in AdvancedTechniquesand Applications on Scanning Probe Microscopy, ed. by J.-L. Bubendorff, F. Lei, (2008), pp. 119–140, Applied Physics Review Books, Research Signpost, ISBN 9788178953786Google Scholar
  58. 58.
    A. Dirani, V. Roucoules, H. Haidara, O. Soppera, Langmuir 26, 17532–17539 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Olivier Soppera
    • 1
  • Ali Dirani
    • 1
  • Safi Jradi
    • 1
  • Vincent Roucoules
    • 1
  • Hamidou Haidara
    • 1
  1. 1.Institut de Sciences des Materiaux de Mulhouse – IS2M, CNRS LRC 7228MulhouseFrance

Personalised recommendations