Laser-Assisted Scanning Probe Alloying Nanolithography (LASPAN)

  • Luohan Peng
  • Huiliang Zhang
  • Philip Hemmer
  • Hong Liang
Part of the NanoScience and Technology book series (NANO)


Nanoscale science and technology demands novel approaches and new knowledge for further development. Nanofabrication has been widely employed in modern science and engineering. Probe-based nanolithography is a common technique to manufacture nanostructures. This research contributes fundamental understanding in surface science through development of a new methodology. A delicate hardware system was designed and constructed to realize the nanometer-scale direct writing. A simple and unique process, namely, laser-assisted scanning probe alloying nanolithography (LASPAN), to fabricate well-defined nanostructures has been developed. The LASPAN system, process, and the application in gold-silicon (Au-Si) binary system have been discussed in this chapter.


Atomic Force Microscope Laser Beam Rutherford Backscatter Spectrometry Laser Power Output Atomic Force Microscope Probe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was sponsored by the National Science Foundation (grant number 0506082).


  1. 1.
    R.C. Jaeger, Introduction to Microelectronic Fabrication, 2nd edn. Modular Series on Solid State Devices (Prentice Hall, Upper Saddle River, 2002)Google Scholar
  2. 2.
    M.J. Madou, Fundamentals of Microfabrication: The Science of Miniaturization, 2nd edn. (CRC Press, Boca Raton, 2002)Google Scholar
  3. 3.
    N.M. Miskovsky, T.T. Tsong, Field evaporation of gold in single- and double-electrode systems. Phys. Rev. B 46(4), 2640 (1992)Google Scholar
  4. 4.
    J.I. Pascual, et al., Quantum contact in gold nanostructures by scanning tunneling microscopy. Phys. Rev. Lett. 71(12), 1852 (1993)Google Scholar
  5. 5.
    G.S. Hsiao, R.M. Penner, J. Kingsley, Deposition of metal nanostructures onto Si(111) surfaces by field evaporation in the scanning tunneling microscope. Appl. Phys. Lett. 64(11), 1350–1352 (1994)Google Scholar
  6. 6.
    D.H. Huang, T. Nakayama, M. Aono, Platinum nanodot formation by atomic point contact with a scanning tunneling microscope platinum tip. Appl. Phys. Lett. 73(23), 3360–3362 (1998)Google Scholar
  7. 7.
    D. Sundrani, S.B. Darling, S.J. Sibener, Hierarchical assembly and compliance of aligned nanoscale polymer cylinders in confinement. Langmuir 20(12), 5091–5099 (2004)Google Scholar
  8. 8.
    A. Laracuente, M.J. Bronikowski, A. Gallagher, Chemical vapor deposition of nanometer-size aluminum features on silicon surfaces using an STM tip. Appl. Surf. Sci. 107, 11–17 (1996)Google Scholar
  9. 9.
    G. Binnig, C.F. Quate, C. Gerber, Atomic force microscope. Phys. Rev. Lett. 56(9), 930 (1986)Google Scholar
  10. 10.
    G. Binnig, H. Rohrer, Scanning tunneling microscopy. IBM J. Res. Dev. 44(1–2), 279–293 (2000)Google Scholar
  11. 11.
    G. Binnig, et al., Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49(1), 57 (1982)Google Scholar
  12. 12.
    R.D. Piner, et al., “Dip-Pen” nanolithography. Science 283(5402), 661–663 (1999)Google Scholar
  13. 13.
    S.Y. Chou, P.R. Krauss, P.J. Renstrom, Imprint lithography with 25-nanometer resolution. Science 272(5258): 85–87 (1996)Google Scholar
  14. 14.
    J.A. Dagata, et al., Modification of hydrogen-passivated silicon by a scanning tunneling microscope operating in air. Appl. Phys. Lett. 56(20), 2001–2003 (1990)Google Scholar
  15. 15.
    H.C. Day, D.R. Allee, Selective area oxidation of silicon with a scanning force microscope. Appl. Phys. Lett. 62(21), 2691–2693 (1993)Google Scholar
  16. 16.
    K. Salaita, et al., Sub-100 nm, centimeter-scale, parallel dip-pen nanolithography. Small 1(10), 940–945 (2005)Google Scholar
  17. 17.
    D. Bullen, et al., Parallel dip-pen nanolithography with arrays of individually addressable cantilevers. Appl. Phys. Lett. 84(5), 789–791 (2004)Google Scholar
  18. 18.
    J. Haaheim, et al., Dip pen nanolithography (DPN): process and instrument performance with NanoInk’s Nscriptor system. Ultramicroscopy 103(2), 117–132 (2005)Google Scholar
  19. 19.
    Hong, S., J. Zhu, C.A. Mirkin, Multiple ink nanolithography: toward a multiple-pen nano-plotter. Science 286(5439), 523–525 (1999)Google Scholar
  20. 20.
    S. Hong, C.A. Mirkin, A nanoplotter with both parallel and serial writing capabilities. Science 288(5472), 1808–1811 (2000)Google Scholar
  21. 21.
    S.W. Lee, et al., Nanostructured polyelectrolyte multilayer organic thin films generated via parallel dip-pen nanolithography. Adv. Mater. 17(22),2749–2753 (2005)Google Scholar
  22. 22.
    L. Fu, et al., Nanopatterning of “Hard” magnetic nanostructures via dip-pen nanolithography and a sol-based ink. Nano Lett. 3(6), 757–760 (2003)Google Scholar
  23. 23.
    J.-M. Nam, et al., Bioactive protein nanoarrays on nickel oxide surfaces formed by dip-pen nanolithography. Angew. Chem. Int. Ed. 43(10), 1246–1249 (2004)Google Scholar
  24. 24.
    J. Jang, G.C. Schatz, M.A. Ratner, Capillary force on a nanoscale tip in dip-pen nanolithography. Phys. Rev. Lett. 90(15), 156104 (2003)Google Scholar
  25. 25.
    P.E. Sheehan, L.J. Whitman, Thiol diffusion and the role of humidity in “Dip Pen Nanolithography”. Phys. Rev. Lett. 88(15), 156104 (2002)Google Scholar
  26. 26.
    C.R. Lowe, Nanobiotechnology: the fabrication and applications of chemical and biological nanostructures. Curr. Opin. Struct. Biol. 10(4), 428–434 (2000)Google Scholar
  27. 27.
    M.H. Hong, et al., Laser assisted surface nanopatterning. Sensors Actuators A: Phys. 108(1–3), 69–74 (2003)Google Scholar
  28. 28.
    V. Grigalinas, et al., Laser pulse assisted nanoimprint lithography. Thin Solid Films 453–454, 13–15 (2004)Google Scholar
  29. 29.
    A.A. Gorbunov, W. Pompe, Thin film nanoprocessing by laser/STM combination. Physica Status Solidi (a) 145(2), 333–338 (1994)Google Scholar
  30. 30.
    S.M. Huang, et al., Pulsed laser-assisted surface structuring with optical near-field enhanced effects. J. Appl. Phys. 92(5), 2495–2500 (2002)Google Scholar
  31. 31.
    M. Tortonese, Cantilevers and tips for atomic force microscopy. Eng. Med. Biol. Mag., IEEE 16(2), 28–33 (1997)Google Scholar
  32. 32.
    B. Bhushan, Scanning probe Microscopy in Nanoscience and Nanotechnology, vol 14. Nanoscience and Technology (Springer, Berlin, 2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Luohan Peng
    • 1
  • Huiliang Zhang
    • 2
  • Philip Hemmer
    • 3
  • Hong Liang
    • 4
  1. 1.Materials Science and EngineeringTexas A&M UniversityCollege StationUSA
  2. 2.Harvard-Smithsonian Center for AstrophysicsCambridgeUSA
  3. 3.214 Zachry Engineering Center, Electrical EngineeringTexas A&M UniversityCollege StationUSA
  4. 4.Mechanical EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations