A New Spin on Quantum Cryptography: Avoiding Trapdoors and Embracing Public Keys

  • Lawrence M. Ioannou
  • Michele Mosca
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7071)


We give new arguments in support of signed quantum key establishment, where quantum cryptography is used in a public-key infrastructure that provides the required authentication. We also analyze more thoroughly than previous works the benefits that quantum key establishment protocols have over certain classical protocols, motivated in part by the various objections to quantum key establishment that are sometimes raised. Previous knowledge of quantum cryptography on the reader’s part is not required for this article, as the definition of “quantum key establishment” that we use is an entirely classical and black-box characterization (one need only trust that protocols satisfying the definition exist).


Signature Scheme Quantum Channel Quantum Cryptography Classical Communication Perfect Forward Secrecy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bennett, C.H., Shor, P.W.: Privacy in a quantum world. Science 284(5415), 747–748 (1999)CrossRefGoogle Scholar
  2. 2.
    Paterson, K.G., Piper, F., Schack, R.: Quantum cryptography: a practical information security perspective. In: Zukowski, M., Kilin, S., Kowalik, J. (eds.) Quantum Communication and Security (2007)Google Scholar
  3. 3.
    Alleaume, R., Bouda, J., Branciard, C., Debuisschert, T., Dianati, M., Gisin, N., Godfrey, M., Grangier, P., Länger, T., Leverrier, A., Lütkenhaus, N., Painchault, P., Peev, M., Poppe, A., Pornin, T., Rarity, J., Renner, R., Ribordy, G., Riguidel, M., Salvail, L., Shields, A., Weinfurter, H., Zeilinger, A.: Secoqc white paper on quantum key distribution and cryptography, arXiv:quant-ph/0701168 (2007)Google Scholar
  4. 4.
    Stebila, D., Mosca, M., Lutkenhaus, N.: The case for quantum key distribution. In: Zukowski, M., Kilin, S., Kowalik, J. (eds.) Proceedings of QuantumComm 2009 Workshop on Quantum and Classical Information Security, vol. 36 (2009)Google Scholar
  5. 5.
    Bernstein, D.: Cost-benefit analysis of quantum cryptography. In: Workshop on Classical and Quantum Information Assurance Foundations and Practice, Schloss Dagstuhl (July 2009),
  6. 6.
    Lütkenhaus, N., Shields, A.J.: Focus on quantum cryptography: Theory and practice. New Journal of Physics 11(4), 045005Google Scholar
  7. 7.
    Goldreich, O.: Foundations of cryptography (Volume I): Basic tools. Cambridge University Press, Cambridge (2001)CrossRefzbMATHGoogle Scholar
  8. 8.
    Goldreich, O.: Foundations of cryptography (Volume II): Basic applications. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  9. 9.
    Bellare, M., Rogaway, P.: Entity Authentication and Key Distribution. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  10. 10.
    Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for building secure channels. Cryptology ePrint Archive, Report 2001/040 (2001),
  11. 11.
    Menezes, A.J., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC Press LLC, Boca Raton (1996)CrossRefzbMATHGoogle Scholar
  12. 12.
    Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179. IEEE Press, New York (1984)Google Scholar
  13. 13.
    Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Müller-Quade, J., Renner, R.: Composability in quantum cryptography. New Journal of Physics 11(8), 085006Google Scholar
  15. 15.
    Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. Cryptology ePrint Archive, Report 2000/067 (2000),
  16. 16.
    Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  17. 17.
    Stinson, D.R.: Cryptography: Theory and Practice. CRC Press LLC, Boca Raton (1995)zbMATHGoogle Scholar
  18. 18.
    LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger security of authenticated key exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784, pp. 1–16. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Okamoto, T., Tanaka, K., Uchiyama, S.: Quantum Public-Key Cryptosystems. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, p. 147. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  20. 20.
    Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and Systems Sciences 28(2), 270–299 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Wegman, M.N., Lawrence Carter, J.: New hash functions and their use in authentication and set equality, pp. 265–279 (1981)Google Scholar
  22. 22.
    Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic applications. In: Proceedings of the 21st Annual ACM Symposium on Theory of Computing (1989)Google Scholar
  23. 23.
    Rompel, J.: One-way functions are necessary and sufficient for secure signatures. In: STOC 1990: Proceedings of the Twenty-Second Annual ACM Symposium on Theory of Computing (1990)Google Scholar
  24. 24.
    Renner, R.: Security of quantum key distribution. PhD thesis, Swiss Federal Institute of Technology (2005)Google Scholar
  25. 25.
    Bernstein, D.J., Buchmann, J., Dahmen, E.: Post Quantum Cryptography (2008)Google Scholar
  26. 26.
    Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity or all languages in np have zeroknowledge proofs. Journal of the ACM (1991)Google Scholar
  27. 27.
    Impagliazzo, R., Rudich, S.: Limits on the Provable Consequences of One-Way Permutations. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 8–26. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  28. 28.
    Cachin, C., Maurer, U.M.: Unconditional Security Against Memory-Bounded Adversaries. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 292–306. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  29. 29.
    Ding, Y.Z., Rabin, M.O.: Hyper-Encryption and Everlasting Security. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 1–26. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  30. 30.
    Adams, C., Lloyd, S.:Google Scholar
  31. 31.
    Rivest, R.L.: Cryptography. In: Handbook of Theoretical Computer Science, pp. 717–755. Elsevier (1990)Google Scholar
  32. 32.
    Gertner, Y., Malkin, T., Reingold, O.: On the impossibility of basing trapdoor functions on trapdoor predicates. In: IEEE Press (ed.) Proc. 42nd Annual IEEE Symposium on the Foundations of Computer Science (FOCS 2001), pp. 126–135 (2001)Google Scholar
  33. 33.
    Beaver, D.: On Deniability in Quantum Key Exchange. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 352–367. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  34. 34.
    Canetti, R., Dwork, C., Naor, M., Ostrovsky, R.: Deniable Encryption. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 90–104. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  35. 35.
    Klonowski, M., Kubiak, P., Kutyłowski, M.: Practical Deniable Encryption. In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 599–609. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  36. 36.
    Childs, A., Jao, D., Soukharev, V.: Constructing elliptic curve isogenies in quantum subexponential time (2010) (in preparation)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Lawrence M. Ioannou
    • 1
    • 2
  • Michele Mosca
    • 1
    • 2
    • 3
  1. 1.Institute for Quantum ComputingUniversity of WaterlooWaterlooCanada
  2. 2.Department of Combinatorics and OptimizationUniversity of WaterlooWaterlooCanada
  3. 3.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations