Kardinalitätsmaximale Matchings

Chapter
Part of the Springer-Lehrbuch Masterclass book series (MASTERCLASS)

Zusammenfassung

Die Matching-Theorie ist eines der klassischen und wichtigsten Gebiete der Kombinatorik und der kombinatorischen Optimierung. In diesem Kapitel sind sämtliche Graphen ungerichtet. Wir erinnern daran, dass ein Matching aus einer Menge von paarweise disjunkten Kanten besteht.

References

  1. 1.
    Alt, H., Blum, N., Mehlhorn, K., Paul, M.: Computing a maximum cardinality matching in a bipartite graph in time \(O(n^{{1,5}}\sqrt{m/\log n})\). Information Processing Letters 37, 237–240 (1991)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Anderson, I.: Perfect matchings of a graph. Journal of Combinatorial Theory B 10, 183–186 (1971)CrossRefMATHGoogle Scholar
  3. 3.
    Berge, C.: Two theorems in graph theory. Proceedings of the National Academy of Science of the U.S. 43, 842–844 (1957)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Berge, C.: Sur le couplage maximum d'un graphe. Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences (Paris) Sér. I Math. 247, 258–259 (1958)MathSciNetMATHGoogle Scholar
  5. 5.
    Brègman, L.M.: Certain properties of nonnegative matrices and their permanents. Doklady Akademii Nauk SSSR 211, 27–30 (1973) [auf Russisch]. English translation: Soviet Mathematics Doklady 14, 945–949 (1973)Google Scholar
  6. 6.
    Dilworth, R.P.: A decomposition theorem for partially ordered sets. Annals of Mathematics 51, 161–166 (1950)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Edmonds, J.: Paths, trees, and flowers. Canadian Journal of Mathematics 17, 449–467 (1965)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Egoryčev, G.P.: Solution of the van der Waerden problem for permanents. Soviet Mathematics Doklady 23, 619–622 (1982)Google Scholar
  9. 9.
    Erdős, P., Gallai, T.: On the minimal number of vertices representing the edges of a graph. Magyar Tudományos Akadémia; Matematikai Kutató Intézetének Közleményei 6, 181–203 (1961)Google Scholar
  10. 10.
    Falikman, D.I.: A proof of the van der Waerden conjecture on the permanent of a doubly stochastic matrix. Matematicheskie Zametki 29, 931–938 (1981) [auf Russisch]. Englische Übersetzung: Math. Notes of the Acad. Sci. USSR 29, 475–479 (1981)Google Scholar
  11. 11.
    Feder, T., Motwani, R.: Clique partitions, graph compression and speeding-up algorithms. Journal of Computer and System Sciences 51, 261–272 (1995)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Fremuth-Paeger, C., Jungnickel, D.: Balanced network flows VIII: a revised theory of phase-ordered algorithms and the \(O(\sqrt{n}m\log(n^{2}/m)/\log n)\) bound for the nonbipartite cardinality matching problem. Networks 41, 137–142 (2003)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Frobenius, G.: Über zerlegbare Determinanten. Sitzungsbericht der Königlich Preussischen Akademie der Wissenschaften XVIII, S. 274–277 (1917) Google Scholar
  14. 14.
    Fulkerson, D.R.: Note on Dilworth's decomposition theorem for partially ordered sets. Proceedings of the AMS 7, 701–702 (1956)MathSciNetMATHGoogle Scholar
  15. 15.
    Gallai, T.: Über extreme Punkt- und Kantenmengen. Annales Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae; Sectio Mathematica 2, 133–138 (1959)MathSciNetMATHGoogle Scholar
  16. 16.
    Gallai, T.: Maximale Systeme unabhängiger Kanten. Magyar Tudományos Akadémia; Matematikai Kutató Intézetének Közleményei 9, 401–413 (1964)MathSciNetGoogle Scholar
  17. 17.
    Geelen, J.F.: An algebraic matching algorithm. Combinatorica 20, 61–70 (2000)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Geelen, J. und Iwata, S.: Matroid matching via mixed skew-symmetric matrices. Combinatorica 25, 187–215 (2005)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Goldberg, A.V., Karzanov, A.V.: Maximum skew-symmetric flows and matchings. Mathematical Programming A 100, 537–568 (2004)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Hall, P.: On representatives of subsets. Journal of the London Mathematical Society 10, 26–30 (1935)CrossRefGoogle Scholar
  21. 21.
    Halmos, P.R., Vaughan, H.E.: The marriage problem. American Journal of Mathematics 72, 214–215 (1950)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Hopcroft, J.E., Karp, R.M.: An \(n^{{5/2}}\) algorithm for maximum matchings in bipartite graphs. SIAM Journal on Computing 2, 225–231 (1973)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Karzanov, A.V.: Tochnaya otsenka algoritma nakhozhdeniya maksimal'nogo potoka, primenennogo k zadache “o predstavitelyakh”. In: Voprosy Kibernetiki, Trudy Seminara po Kombinatornoĭ Matematike, S. 66–70. Sovetskoe Radio, Moskau (1973) [auf Russisch] Google Scholar
  24. 24.
    König, D.: Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre. Mathematische Annalen 77, 453–465 (1916)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    König, D.: Graphs and matrices. Matematikaiés Fizikai Lapok 38, 116–119 (1931) [auf Ungarisch]MATHGoogle Scholar
  26. 26.
    König, D.: Über trennende Knotenpunkte in Graphen (nebst Anwendungen auf Determinanten und Matrizen). Acta Litteratum ac Scientiarum Regiae Universitatis Hungaricae Francisco-Josephinae (Szeged). Sectio Scientiarum Mathematicarum 6, 155–179 (1933)Google Scholar
  27. 27.
    Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Research Logistics Quarterly 2, 83–97 (1955)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Lovász, L.: A note on factor-critical graphs. Studia Scientiarum Mathematicarum Hungarica 7, 279–280 (1972)MathSciNetGoogle Scholar
  29. 29.
    Lovász, L.: On determinants, matchings and random algorithms. In: Budach, L. (Hrsg.) Fundamentals of Computation Theory, S. 565–574. Akademie-Verlag, Berlin (1979) Google Scholar
  30. 30.
    Mendelsohn, N.S., Dulmage, A.L.: Some generalizations of the problem of distinct representatives. Canadian Journal of Mathematics 10, 230–241 (1958)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Micali, S., Vazirani, V.V.: An \(O(V^{{1/2}}E)\) algorithm for finding maximum matching in general graphs. Proceedings of the 21st Annual IEEE Symposium on Foundations of Computer Science, S. 17–27 (1980)Google Scholar
  32. 32.
    Mucha, M., Sankowski, P.: Maximum matchings via Gaussian elimination. Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science, S. 248–255 (2004) Google Scholar
  33. 33.
    Mulmuley, K., Vazirani, U.V., Vazirani, V.V.: Matching is as easy as matrix inversion. Combinatorica 7, 105–113 (1987)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Petersen, J.: Die Theorie der regulären Graphs. Acta Mathematica 15, 193–220 (1891)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Rabin, M.O., Vazirani, V.V.: Maximum matchings in general graphs through randomization. Journal of Algorithms 10, 557–567 (1989)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Rizzi, R.: König's edge coloring theorem without augmenting paths. Journal of Graph Theory 29, 87 (1998)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Schrijver, A.: Counting 1-factors in regular bipartite graphs. Journal of Combinatorial Theory B 72, 122–135 (1998)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Sperner, E.: Ein Satz über Untermengen einer endlichen Menge. Mathematische Zeitschrift 27, 544–548 (1928)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Szegedy, B., Szegedy, C.: Symplectic spaces and ear-decomposition of matroids. Combinatorica 26, 353–377 (2006)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Szigeti, Z.: On a matroid defined by ear-decompositions. Combinatorica 16, 233–241 (1996)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Tutte, W.T.: The factorization of linear graphs. Journal of the London Mathematical Society 22, 107–111 (1947)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Vazirani, V.V.: A theory of alternating paths and blossoms for proving correctness of the \(O(\sqrt{V}E)\) general graph maximum matching algorithm. Combinatorica 14, 71–109 (1994)MathSciNetCrossRefMATHGoogle Scholar

Weiterführende Literatur

  1. 43.
    Gerards, A.M.H.: Matching. In: Ball, M.O., Magnanti, T.L., Monma, C.L., Nemhauser, G.L. (Hrsg.) Handbooks in Operations Research and Management Science, Vol. 7: Network Models, S. 135–224. Elsevier, Amsterdam (1995) CrossRefGoogle Scholar
  2. 44.
    Lawler, E.L.: Combinatorial Optimization; Networks and Matroids, Kap. 5, 6. Holt, Rinehart and Winston, New York (1976) MATHGoogle Scholar
  3. 45.
    Lovász, L., Plummer, M.D.: Matching Theory. Akadémiai Kiadó, Budapest (1986), North-Holland, Amsterdam (1986) Google Scholar
  4. 46.
    Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization; Algorithms and Complexity, Kap. 10. Prentice-Hall, Englewood Cliffs (1982) MATHGoogle Scholar
  5. 47.
    Pulleyblank, W.R.: Matchings and extensions. In: Graham, R.L., Grötschel, M., Lovász, L. (Hrsg.) Handbook of Combinatorics, Vol. 1. Elsevier, Amsterdam (1995) Google Scholar
  6. 48.
    Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency, Kap. 16, 24. Springer, Berlin (2003) MATHGoogle Scholar
  7. 49.
    Tarjan, R.E.: Data Structures and Network Algorithms, Kap. 9. SIAM, Philadelphia (1983) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Forschungsinstitut für Diskrete MathematikUniversität BonnBonnDeutschland

Personalised recommendations