Inverting Shear-Wave Splitting Measurements for Fracture Properties

  • James P. Verdon
Part of the Springer Theses book series (Springer Theses)


Seismic anisotropy refers to the situation where the velocity of a seismic wave is dependent on its direction of propagation and/or polarisation. Seismic anisotropy in sedimentary rocks can have many causes, which act at many length-scales. These mechanisms include mineral alignment (e.g., Valcke et al., 2006), alignment of grain-scale fabrics (e.g., Hall et al., 2008), which can be distorted by non-hydrostatic stresses (e.g., Zatsepin and Crampin, 1997; Verdon et al., 2008), larger scale sedimentary layering (e.g., Backus, 1962) and the presence of aligned fracture sets (e.g., Hudson, 1981). In hydrocarbon settings, the most common anisotropic mechanisms are horizontally aligned sedimentary layers, and horizontally aligned mineral and grain-scale fabrics. Such an anisotropic system will have a vertical axis of symmetry, and is referred to as Vertical Transverse Isotropy (VTI).


Stiffness Tensor Seismic Anisotropy Shear Wave Splitting Microseismic Event Fracture Strike 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abt DL, Fischer KM (2008) Resolving three-dimensional anisotropic structure with shear wave splitting tomography. Geophys J Int 173(3):859–886CrossRefGoogle Scholar
  2. Al-Anboori ASS (2006) Anisotropy, focal mechanisms, and state of stress in an oilfiled: Passive seismic monitoring in Oman. Ph.D. thesis, University of LeedsGoogle Scholar
  3. Al-Harrasi O, Al-Anboori A, Wüstefeld A, Kendall J-M (2010). Seismic anisotropy in a hydrocarbon field estimated from microseismic data. Geophysical Prospecting (in press)Google Scholar
  4. Backus GE (1962) Long-wave elastic anisotropy produced by horizontal layering. J Geophys Res 66:4427–4440CrossRefGoogle Scholar
  5. Bakulin A, Grechka V, Tsvankin I (2002) Seismic inversion for the parameters of two orthogonal fracture sets in a VTI backgroound medium. Geophysics 67(1):292–299CrossRefGoogle Scholar
  6. Barruol G, Hoffmann R (1999) Upper mantle anisotropy beneath the geoscope stations. J Geophys Res 104:10757–10774CrossRefGoogle Scholar
  7. Blackman DK, Kendall J-M (1997) Sensitivity of teleseismic body waves to mineral texture and melt in the mantle beneath a mid-ocean ridge. Philos Trans R Soc London, Ser A 355:217–231CrossRefGoogle Scholar
  8. Blackman DK, Orcutt JA, Forsyth DW, Kendall J-M (1993) Seismic anisotropy in the mantle beneath an oceanic spreading center. Nature 366:675–677CrossRefGoogle Scholar
  9. Boness NL, Zoback MD (2006) Mapping stress and structurally controlled crustal shear velocity anisotropy in California. Geology 34:825–828CrossRefGoogle Scholar
  10. Brown LT (2002) Integration of rock physics and reservoir simulation for the interpretation of time-lapse seismic data at Weyburn field, Saskatchewan. Master’s thesis, Colorado School of Mines, Golden, Colorado.Google Scholar
  11. Brown RJS, Korringa J (1975) On the dependence of the elastic properties of a porous rock on the compressibility of the pore fluid. Geophysics 40(4):608–616CrossRefGoogle Scholar
  12. Bunge RJ (2000) Midale reservoir fracture characterization using integrated well and seismic data, Weyburn field, Saskatchewan. Master’s thesis, Colorado School of Mines, Golden, Colorado.Google Scholar
  13. Crampin S (1991) A decade of shear-wave splitting in the earth’s crust: what does it mean? what use can we make of it? and what should we do next?. Geophys J Int 107:387–407CrossRefGoogle Scholar
  14. Crampin S, Peacock S (2008) A review of the current understanding of seismic shear-wave splitting in the earth’s crust and common fallacies in interpretation. Wave Motion 45:675–722CrossRefGoogle Scholar
  15. Crampin S, Gao Y, Peacock S (2008) Stress-forcasting (not predicting) earthquakes: a paradigm shift?. Geology 36:427–430CrossRefGoogle Scholar
  16. Gassmann F (1951) Uber die elastizitat poroser medien. Vierteljahresschrift der Naturforschenden Gesellschaft in Zurich 96:1–23Google Scholar
  17. Grechka V (2007) Multiple cracks in VTI rocks: effective properties and fracture characterisation. Geophysics 72(5):D81–D91CrossRefGoogle Scholar
  18. Grechka V, Tsvankin I (2003) Feasibility of seismic characterisation of multiple fracture sets. Geophysics 68(4):1399–1407CrossRefGoogle Scholar
  19. Hall SA, Kendall J-M (2000) Constraining the interpretation of AVOA for fracture characterisation. In: Ikelle L, Gangi A (eds) Anisotropy 2000 Fractures Converted Waves and Case Studies. Society of Exploration Geophysics, pp 107–144Google Scholar
  20. Hall SA, Kendall J-M, Maddock J, Fisher Q (2008) Crack density tensor inversion for analysis of changes in rock frame architecture. Geophys J Int 173:577–592CrossRefGoogle Scholar
  21. Horne S, MacBeth C (1994) Inversion for seismic anisotropy using genetic algorithms. Geophys Prospect 42:953–974CrossRefGoogle Scholar
  22. Hudson JA (1981) Wave speeds and attenuation of elastic waves in material containing cracks. Geophys J R Astron Soc 64:133–150Google Scholar
  23. Hudson JA, Liu E, Crampin S (1996) The mechanical properties of materials with interconnected cracks and pores. Geophys J Int 124:105–112CrossRefGoogle Scholar
  24. Hudson JA, Pointer T, Liu E (2001) Effective medium theories for fluid saturated materials with aligned cracks. Geophys Prospect 49:509–522CrossRefGoogle Scholar
  25. Kendall J-M, Stuart GW, Ebinger CJ, Bastow ID, Keir D (2005) Magma assisted rifting in Ethiopia. Nature 433:146–148CrossRefGoogle Scholar
  26. Kendall J-M, Pilidou S, Keir D, Bastow ID, Stuart GW, Ayele A (2006) Mantle upwellings, melt migration and magma assisted rifting in Africa: insights from seismic anisotropy. In: Yirgu G, Ebinger CJ, Maguire PKH (eds) Structure and evolution of the rift systems within the Afar volcanic province, Northeast Africa, vol 259. Geological Society of London Special Publication, pp 57–74Google Scholar
  27. Kendall J-M, Fisher QJ, Covey Crump S, Maddock J, Carter A, Hall SA, Wookey J, Valcke S, Casey M, Lloyd G, Ben Ismail W (2007) Seismic anisotropy as an indicator of reservoir quality of siliclastic rocks. In: Jolley S, Barr D, Walsh J, Knipe R (eds) Structurally complex reservoirs, vol 292. Geological Society of London Special Publication, pp 123–136Google Scholar
  28. Pointer T, Liu E, Hudson JA (2000) Seismic wave propagation in cracked porous media. Geophys J Int 142:199–231CrossRefGoogle Scholar
  29. Rathore JS, Fjaer E, Holt RM, Renlie L (1994) P- and S-wave anisotropy of a synthetic sandstone with controlled crack geometry. Geophys Prospect 43:711–728CrossRefGoogle Scholar
  30. Rial JA, Elkibbi M, Yang M (2005) Shear-wave splitting as a tool for the characterization of geothermal fractured reservoirs: lessons learned. Geothermics 34:365–385CrossRefGoogle Scholar
  31. Rümpker G, Tommasi A, Kendall J-M (1999) Numerical simulations of depth-dependent anisotropy and frequency-dependent wave propagation effects. J Geophys Res 104:23141–23153CrossRefGoogle Scholar
  32. Schoenberg M, Sayers CM (1995) Seismic anisotropy of fractured rock. Geophysics 60(1):204–211CrossRefGoogle Scholar
  33. Silver PG, Chan WWJ (1991) Shear-wave splitting and subcontinental mantle deformation. J Geophys Res 96:16429–16454CrossRefGoogle Scholar
  34. Tandon GP, Weng GJ (1984) The effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned composites. Polym Compos 5(4):327–333CrossRefGoogle Scholar
  35. Teanby NA, Kendall J-M, Jones RH, Barkved O (2004) Stress-induced temporal variations in seismic anisotropy observed in microseismic data. Geophys J Int 156:459–466CrossRefGoogle Scholar
  36. Teanby NA, Kendall J-M, van der Baan M (2004) Automation of shear-wave splitting measurements using cluster analysis. Bull Seismol Soc Am 94(2):453–463CrossRefGoogle Scholar
  37. Thomsen L (1986) Weak elastic anisotropy. Geophysics 51(10):1954–1966CrossRefGoogle Scholar
  38. Valcke SLA, Casey M, Lloyd GE, Kendall J-M, Fisher QJ (2006) Lattice preferred orientation and seismic anisotropy in sedimentary rocks. Geophys J Int 166:652–666CrossRefGoogle Scholar
  39. Verdon JP, Kendall J-M (2011) Detection of multiple fracture sets using observations of shear-wave splitting in microseismic data. Geophys Prospect 59:593–608CrossRefGoogle Scholar
  40. Verdon JP, Angus DA, Kendall J-M, Hall SA (2008) The effects of microstructure and nonlinear stress on anisotropic seismic velocities. Geophys 73(4):D41–D51CrossRefGoogle Scholar
  41. Verdon JP, Kendall J-M, Wüstefeld A (2009) Imaging fractures and sedimentary fabrics using shear wave splitting measurements made on passive seismic data. Geophys J Int 179(2):1245–1254CrossRefGoogle Scholar
  42. Verdon JP, White DJ, Kendall J-M, Angus DA, Fisher Q, Urbancic T (2010) Passive seismic monitoring of carbon dioxide storage at Weyburn. The Leading Edge 29(2):200–206CrossRefGoogle Scholar
  43. Verdon JP, Kendall J-M, Maxwell SC (2010a) A comparison of passive seismic monitoring of fracture stimulation due to water versus \(\hbox{CO}_{2}\) injection. Geophysics 75(3):MA1–MA7Google Scholar
  44. Wookey J (2011) Direct probabilistic inversion of shear-wave data for anisotropy. Geophysical Research Abstracts, EGU General AssemblyGoogle Scholar
  45. Wookey J, Helffrich GR (2008) Inferences on inner-core shear-wave anisotropy and texture from an observation of PKJKP waves. Nature 454:873–876CrossRefGoogle Scholar
  46. Wüstefeld A, Bokelmann G (2007) Null detection in shear-wave splitting measurements. Bull Seismol Soc Am 97(4):1204–1211CrossRefGoogle Scholar
  47. Wüstefeld A, Al-Harrasi O, Verdon JP, Wookey J, Kendall J-M (2010) A strategy for automated analysis of passive microseismic data to study seismic anisotropy and fracture characteristics. Geophys Prospect 58(5):755–773CrossRefGoogle Scholar
  48. Wustefeld A, Verdon JP, Kendall J-M, Rutledge J, Clarke H, Wookey J (2011a) Inferring rock fracture evolution during reservoir stimulation from seismic anisotropy. Geophysics, accepted.Google Scholar
  49. Wustefeld A, Kendall J-M, Verdon JP, van Aas, A (2011b) In situ monitoring of rock fracturing using shear-wave splitting analysis: An example from a mining setting. Geophys J Inter 187:848-860Google Scholar
  50. Zatsepin S, Crampin S (1997) Modelling the compliance of crustal rock-I. Response of shear-wave splitting to differential stress. Geophys J Int 129:477–494CrossRefGoogle Scholar

Copyright information

© Springer Verlag-Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.School of Earth SciencesUniversity of BristolBristolUK

Personalised recommendations