Non-interactive and Re-usable Universally Composable String Commitments with Adaptive Security

  • Marc Fischlin
  • Benoît Libert
  • Mark Manulis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7073)

Abstract

We present the first provably secure constructions of universally composable (UC) commitments (in pairing-friendly groups) that simultaneously combine the key properties of being non-interactive, supporting commitments to strings (instead of bits only), and offering re-usability of the common reference string for multiple commitments. Our schemes are also adaptively secure assuming reliable erasures.

Keywords

Commitment Scheme Decryption Oracle Common Reference String Corrupted Party Adaptive Security 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-Preserving Signatures and Commitments to Group Elements. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)Google Scholar
  2. 2.
    Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A Concrete Security Treatment of Symmetric Encryption. In: FOCS 1997, pp. 394–403 (1997)Google Scholar
  3. 3.
    Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)Google Scholar
  4. 4.
    Camenisch, J., Chandran, N., Shoup, V.: A Public Key Encryption Scheme Secure Against Key Dependent Chosen Plaintext and Adaptive Chosen Ciphertext Attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 351–368. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Camenisch, J., Shoup, V.: Practical Verifiable Encryption and Decryption of Discrete Logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic Protocols. In: FOCS 2001, pp. 136–145 (2001)Google Scholar
  7. 7.
    Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally Composable Security with Global Setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–85. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Canetti, R., Fischlin, M.: Universally Composable Commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and multi-party secure computation. In: STOC 2002, pp. 494–503 (2002)Google Scholar
  10. 10.
    Cathalo, J., Libert, B., Yung, M.: Group Encryption: Non-Interactive Realization in the Standard Model. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 179–196. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably Secure Against Adaptive Chosen Ciphertext Attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)Google Scholar
  12. 12.
    Damgård, I., Groth, J.: Non-interactive and reusable non-malleable commitment schemes. In: STOC 2003, pp. 426–437 (2003)Google Scholar
  13. 13.
    Damgård, I., Nielsen, J.B.: Perfect Hiding and Perfect Binding Universally Composable Commitment Schemes with Constant Expansion Factor. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 581–596. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography. In: STOC 1991, pp. 542–552. ACM Press (1991)Google Scholar
  15. 15.
    Groth, J.: Homomorphic trapdoor commitments to group elements. Cryptology ePrint Archive: Report 2009/007 (2009)Google Scholar
  16. 16.
    Groth, J., Sahai, A.: Efficient Non-Interactive Proof Systems for Bilinear Groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Hofheinz, D., Kiltz, E.: Secure Hybrid Encryption from Weakened Key Encapsulation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Hofheinz, D., Müller-Quade, J.: Universally Composable Commitments Using Random Oracles. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 58–76. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Katz, J.: Universally Composable Multi-party Computation Using Tamper-Proof Hardware. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 115–128. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Lindell, Y.: Highly-Efficient Universally-Composable Commitments Based on the DDH Assumption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 446–466. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  21. 21.
    Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic applications. In: STOC 1989, pp. 33–43 (1989)Google Scholar
  22. 22.
    Nishimaki, R., Fujisaki, E., Tanaka, K.: Efficient Non-interactive Universally Composable String-Commitment Schemes. In: Pieprzyk, J., Zhang, F. (eds.) ProvSec 2009. LNCS, vol. 5848, pp. 3–18. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    Okamoto, T., Uchiyama, S.: A New Public-Key Cryptosystem as Secure as Factoring. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 308–318. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  24. 24.
    Page, D., Smart, N.P., Vercauteren, F.: A comparison of MNT curves and supersingular curves. Appl. Algebra Eng., Commun. Comput. 17(5), 379–392 (2006)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)Google Scholar
  26. 26.
    Pedersen, T.: Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)Google Scholar
  27. 27.
    Peikert, C., Waters, B.: Lossy Trapdoor Functions and Their Applications. In: STOC 2008, pp. 187–196 (2008)Google Scholar
  28. 28.
    Shacham, H.: A Cramer-Shoup encryption scheme from the linear assumption and from progressively weaker linear variants. Cryptology ePrint Archive: Report 2007/074 (2007)Google Scholar
  29. 29.
    Shoup, V.: A proposal for the ISO standard for public-key encryption (version 2.1) (2001) (manuscript), http://shoup.net/
  30. 30.
    Zhu, H.: New Constructions for Reusable, Non-erasure and Universally Composable Commitments. In: Bao, F., Li, H., Wang, G. (eds.) ISPEC 2009. LNCS, vol. 5451, pp. 102–111. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2011

Authors and Affiliations

  • Marc Fischlin
    • 1
  • Benoît Libert
    • 2
  • Mark Manulis
    • 1
  1. 1.TU Darmstadt & CASEDGermany
  2. 2.ICTEAM InstituteUniversité catholique de LouvainBelgium

Personalised recommendations