Advertisement

Two Provers in Isolation

  • Claude Crépeau
  • Louis Salvail
  • Jean-Raymond Simard
  • Alain Tapp
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7073)

Abstract

We revisit the Two-Prover Bit Commitment Scheme of BenOr, Goldwasser, Kilian and Wigderson [BGKW88]. First, we introduce Two-Prover Bit Commitment Schemes similar to theirs and demonstrate that although they are classically secure using their proof technique, we also show that if the provers are allowed to share quantum entanglement, they are able to successfully break the binding condition. Secondly, we translate this result in a purely classical setting and investigate the possibility of using this Bit Commitment scheme in applications. We observe that the security claim of [BGKW88] based on the assumption that the provers cannot communicate is not a sufficient criteria to obtain soundness. We develop a set of conditions, called isolation, that must be satisfied by any third party interacting with the provers to guarantee the binding property of the Bit Commitment.

Keywords

IEEE Computer Society Binding Condition Quantum Strategy Commitment Scheme Oblivious Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [Ara02]
    Aravind, P.K.: Bell’s theorem without inequalities and only two distant observers. Foundation of Physics Letters, 397–405 (2002)Google Scholar
  2. [BCMS98]
    Brassard, G., Crépeau, C., Mayers, D., Salvail, L.: Defeating classical bit commitment schemes with a quantum computer. ArXiv Quantum Physics e-prints (1998)Google Scholar
  3. [BCU+06]
    Buhrman, H., Christandl, M., Unger, F., Wehner, S., Winter, A.: Implications of superstrong nonlocality for cryptography. Proceedings of The Royal Society A 462(2071), 1919–1932 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  4. [BFL91]
    Babai, L., Fortnow, L., Lund, C.: Non-deterministic exponential time has two-prover interactive protocols. Computational Complexity 1, 3–40 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  5. [BGKW88]
    BenOr, M., Goldwasser, S., Kilian, J., Widgerson, A.: Multi-prover interactive proofs: how to remove intractability. In: STOC 1988: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, pp. 113–131. ACM Press, New York (1988)Google Scholar
  6. [BHOP08]
    Ben-Or, M., Hassidim, A., Pilpel, H.: Quantum Multi Prover Interactive Proofs with Communicating Provers. In: 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2008), pp. 467–476. IEEE Computer Society (2008)Google Scholar
  7. [CHTW04]
    Cleve, R., Hoyer, P., Toner, B., Watrous, J.: Consequences and limits of nonlocal strategies. In: CCC 2004: Proceedings of the 19th IEEE Annual Conference on Computational Complexity, pp. 236–249. IEEE Computer Society, Washington, DC, USA (2004)CrossRefGoogle Scholar
  8. [CLS01]
    Crépeau, C., Légaré, F., Salvail, L.: How to Convert the Flavor of a Quantum Bit Commitment. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 60–77. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. [CSUU07]
    Cleve, R., Slofstra, W., Unger, F., Upadhyay, S.: Perfect Parallel Repetition Theorem for Quantum XOR Proof Systems. In: CCC 2007: Proceedings of the 2007 IEEE 22nd Annual Conference on Computational Complexity, pp. 109–114. IEEE Computer Society, Los Alamitos (2007)Google Scholar
  10. [DFSS05]
    Damgård, I., Fehr, S., Salvail, L., Schaffner, C.: Cryptography in the bounded quantum-storage model. In: 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2005), pp. 449–458. IEEE Computer Society (2005)Google Scholar
  11. [DFRSS07]
    Damgård, I., Fehr, S., Renner, R., Salvail, L., Schaffner, C.: A Tight High-Order Entropic Quantum Uncertainty Relation with Applications. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 360–378. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. [DLTW08]
    Doherty, A.C., Liang, Y.-C., Toner, B., Wehner, S.: The Quantum Moment Problem and Bounds on Entangled Multi-prover Games. In: CCC 2008: Proceedings of the 2008 IEEE 23rd Annual Conference on Computational Complexity, pp. 199–210. IEEE Computer Society, Washington, DC, USA (2008)CrossRefGoogle Scholar
  13. [DMS00]
    Dumais, P., Mayers, D., Salvail, L.: Perfectly concealing quantum bit commitment from any quantum one-way permutation, pp. 300–315 (2000)Google Scholar
  14. [IKM09]
    Ito, T., Kobayashi, H., Matsumoto, K.: Oracularization and Two-Prover One-Round Interactive Proofs against Nonlocal Strategies. In: CCC 2009: Proceedings of the 2009 IEEE 24th Annual Conference on Computational Complexity, pp. 217–228. IEEE Computer Society, Los Alamitos (2009)CrossRefGoogle Scholar
  15. [IKO03]
    Ibaraki, T., Katoh, N., Ono, H. (eds.): ISAAC 2003. LNCS, vol. 2906. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  16. [IKPSY08]
    Ito, T., Kobayashi, H., Preda, D., Sun, X., Yao, A.C.-C.: Generalized Tsirelson Inequalities, Commuting-Operator Provers, and Multi-prover Interactive Proof Systems. In: CCC 2008: Proceedings of the 2008 IEEE 23rd Annual Conference on Computational Complexity, pp. 187–198. IEEE Computer Society, Washington, DC, USA (2008)CrossRefGoogle Scholar
  17. [Ken05]
    Kent, A.: Secure classical bit commitment using fixed capacity communication channels. J. Cryptology 18(4), 313–335 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  18. [Kil88]
    Kilian, J.: Founding cryptography on oblivious transfer. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, pp. 20–31 (1988)Google Scholar
  19. [KKMV08]
    Kempe, J., Kobayashi, H., Matsumoto, K., Vidick, T.: Using Entanglement in Quantum Multi-prover Interactive Proofs. In: CCC 2008: Proceedings of the 2008 IEEE 23rd Annual Conference on Computational Complexity, pp. 211–222. IEEE Computer Society, Washington, DC, USA (2008)CrossRefGoogle Scholar
  20. [KM03]
    Kobayashi, H., Matsumoto, K.: Quantum multi-prover interactive proof systems with limited prior entanglement. J. Comput. Syst. Sci. 66(3), 429–450 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  21. [KMY03]
    Kobayashi, H., Matsumoto, K., Yamakami, T.: Quantum merlin-arthur proof systems: Are multiple merlins more helpful to arthur? In: Ibaraki, et al. (eds.) [IKO03], pp. 189–198 (2003)Google Scholar
  22. [LC97]
    Lo, H.-K., Chau, H.F.: Is quantum bit commitment really possible? Phys. Rev. Lett. 78(17), 3410–3413 (1997)CrossRefGoogle Scholar
  23. [LS97]
    Lapidot, D., Shamir, A.: Fully parallelized multi-prover protocols for nexp-time. J. Comput. Syst. Sci. 54(2), 215–220 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  24. [May96]
    Mayers, D.: Unconditionally secure quantum bit commitment is impossible (November 1996)Google Scholar
  25. [PR94]
    Popescu, S., Rohrlich, D.: Nonlocality as an axiom. Foundations of Physics 24, 379 (1994)CrossRefMathSciNetGoogle Scholar
  26. [PR97]
    Popescu, S., Rohrlich, D.: Causality and nonlocality as axioms for quantum mechanics. In: Symposium on Causality and Locality in Modern Physics and Astronomy (1997)Google Scholar
  27. [Weh06]
    Wehner, S.: Entanglement in Interactive Proof Systems with Binary Answers. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 162–171. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  28. [Yao03]
    Yao, A.C.-C.: Interactive proofs for quantum computation. In: Ibaraki, et al. (eds.) [IKO03], p. 1 (2003)Google Scholar

Copyright information

© International Association for Cryptologic Research 2011

Authors and Affiliations

  • Claude Crépeau
    • 1
  • Louis Salvail
    • 2
  • Jean-Raymond Simard
    • 3
  • Alain Tapp
    • 2
  1. 1.School of Computer ScienceMcGill UniversityMontréalCanada
  2. 2.Département d’Informatique et R.O.Université de MontréalMontréalCanada
  3. 3.GIRO inc.MontréalCanada

Personalised recommendations