Advertisement

Oblivious RAM with O((logN)3) Worst-Case Cost

  • Elaine Shi
  • T. -H. Hubert Chan
  • Emil Stefanov
  • Mingfei Li
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7073)

Abstract

Oblivious RAM is a useful primitive that allows a client to hide its data access patterns from an untrusted server in storage outsourcing applications. Until recently, most prior works on Oblivious RAM aim to optimize its amortized cost, while suffering from linear or even higher worst-case cost. Such poor worst-case behavior renders these schemes impractical in realistic settings, since a data access request can occasionally be blocked waiting for an unreasonably large number of operations to complete.

This paper proposes novel Oblivious RAM constructions that achieves poly-logarithmic worst-case cost, while consuming constant client-side storage. To achieve the desired worst-case asymptotic performance, we propose a novel technique in which we organize the O-RAM storage into a binary tree over data buckets, while moving data blocks obliviously along tree edges.

Keywords

Leaf Node Binary Tree Index Structure Data Block Amortize Cost 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ajtai, M., Komlós, J., Szemerédi, E.: Sorting in c log n parallel steps. Combinatorica 3, 1–19 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Beame, P., Machmouchi, W.: Making rams oblivious requires superlogarithmic overhead. Electronic Colloquium on Computational Complexity (ECCC) 17, 104 (2010)Google Scholar
  3. 3.
    Boneh, D., Mazieres, D., Popa, R.A.: Remote oblivious storage: Making oblivious ram practical (2011) (manuscript), http://dspace.mit.edu/bitstream/handle/1721.1/62006/MIT-CSAIL-TR-2011-018.pdf
  4. 4.
    Damgård, I., Meldgaard, S., Nielsen, J.B.: Perfectly Secure Oblivious RAM Without Random Oracles. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 144–163. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Goldreich, O.: Towards a theory of software protection and simulation by oblivious rams. In: STOC (1987)Google Scholar
  6. 6.
    Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious rams. J. ACM (1996)Google Scholar
  7. 7.
    Goodrich, M.T., Mitzenmacher, M.: Mapreduce parallel cuckoo hashing and oblivious ram simulations. CoRR, abs/1007.1259 (2010)Google Scholar
  8. 8.
    Goodrich, M.T., Mitzenmacher, M., Ohrimenko, O., Tamassia, R.: Oblivious ram simulation with efficient worst-case access overhead. In: CCSW (2011)Google Scholar
  9. 9.
    Hsu, J., Burke, P.: Behavior of tandem buffers with geometric input and markovian output. IEEE Transactions on Communications 24, 358–361 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Kushilevitz, E., Lu, S., Ostrovsky, R.: On the (in)security of hash-based oblivious ram and a new balancing scheme, http://eprint.iacr.org/2011/327.pdf
  11. 11.
    Ostrovsky, R.: Efficient computation on oblivious rams. In: STOC (1990)Google Scholar
  12. 12.
    Pinkas, B., Reinman, T.: Oblivious RAM Revisited. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 502–519. Springer, Heidelberg (2010)Google Scholar
  13. 13.
    Raab, M., Steger, A.: "Balls into Bins" - A Simple and Tight Analysis. In: Rolim, J.D.P., Serna, M., Luby, M. (eds.) RANDOM 1998. LNCS, vol. 1518, pp. 159–170. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  14. 14.
    Shi, E., Chan, H., Stefanov, E., Li, M.: Oblivious ram with o((logn)3) worst-case cost. Online TR (2011), http://eprint.iacr.org/2011/407.pdf
  15. 15.
    Stefanov, E., Shi, E., Song, D.: Towards practical oblivious ram (2011) (manuscript)Google Scholar
  16. 16.
    Williams, P., Sion, R.: Usable PIR. In: NDSS (2008)Google Scholar
  17. 17.
    Williams, P., Sion, R., Carbunar, B.: Building castles out of mud: practical access pattern privacy and correctness on untrusted storage. In: CCS (2008)Google Scholar

Copyright information

© International Association for Cryptologic Research 2011

Authors and Affiliations

  • Elaine Shi
    • 1
  • T. -H. Hubert Chan
    • 2
  • Emil Stefanov
    • 3
  • Mingfei Li
    • 2
  1. 1.UC Berkeley/PARCUSA
  2. 2.The University of Hong KongHong Kong
  3. 3.UC BerkeleyUSA

Personalised recommendations