Advertisement

ZoomTree: Unrestricted Zoom Paths in Multiscale Visual Analysis of Relational Databases

  • Baoyuan Wang
  • Gang Chen
  • Jiajun Bu
  • Yizhou Yu
Part of the Communications in Computer and Information Science book series (CCIS, volume 229)

Abstract

Unrestricted zoom paths are much desired to gain deep understandings during visual analysis of relational databases. We present a multiscale visualization system supporting unrestricted zoom paths. Our system has a flexible visual interface on the client side, called “ZoomTree”, and a powerful and efficient back end with GPU-based parallel online data cubing and CPU-based data clustering. Zoom-trees are seamlessly integrated with a table-based overview using “hyperlinks” embedded in the table, and are designed to represent the entire history of a zooming process that reveals multiscale data characteristics. Arbitrary branching and backtracking in a zoom-tree are made possible by our fast parallel online cubing algorithm for partially materialized data cubes. Partial materialization provides a good tradeoff among preprocessing time, storage and online query time. Experiments and a user study have confirmed the effectiveness of our design.

Keywords

Relational Database Query Processing Point Query Thread Block Data Cube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gray, J., Bosworth, A., Lyaman, A., Pirahesh, H.: Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab and Sub-Totals 1, 29–54 (1996)Google Scholar
  2. 2.
    Sarawagi, S., Agrawal, R., Megiddo, N.: Discovery-Driven Exploration of OLAP Data Cubes. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 168–182. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Chaudhuri, S., Dayal, U.: An Overview of Data Warehousing and OLAP Technology. SIGMOD Record 26, 65–74 (1997)CrossRefGoogle Scholar
  4. 4.
    Stolte, C., Tang, D., Hanrahan, P.: Polaris: A System for Query, Analysis, and Visualization of Multidimensional Relational Databases. IEEE Trans. on Visualization and Computer Graphics 8, 52–65 (2002)CrossRefGoogle Scholar
  5. 5.
    Stolte, C., Tang, D., Hanrahan, P.: Query, analysis, and visualization of hierarchically structured data using Polaris. In: KDD 2002: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 112–122 (2002)Google Scholar
  6. 6.
    Stolte, C., Tang, D., Hanrahan, P.: Multiscale Visualization Using Data Cubes. In: INFOVIS 2002: Proceedings of the IEEE Symposium on Information Visualization, pp. 7–14 (2002)Google Scholar
  7. 7.
    Stolte, C., Tang, D., Hanrahan, P.: Multiscale Visualization Using Data Cubes. IEEE Trans. on Visualization and Computer Graphics 9, 176–187 (2003)CrossRefGoogle Scholar
  8. 8.
    Shalom, S.A., Dash, M., Tue, M.: Efficient K-Means clustering using accelerated graphics processors. In: Song, I.-Y., Eder, J., Nguyen, T.M. (eds.) DaWaK 2008. LNCS, vol. 5182, pp. 166–175. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Inc., Beezix: Microsoft Excel 2007 Charts and Tables Quick Reference Guide (2007)Google Scholar
  10. 10.
    Bederson, B.B., Hollan, J.D.: Pad++: a zooming graphical interface for exploring alternate interface physics. In: UIST 1994: ACM Symposium on User Interface Software and Technology, pp. 17–26 (1994)Google Scholar
  11. 11.
    Mansmann, S., Scholl, M.H.: Exploring OLAP aggregates with hierarchical visualization techniques. In: SAC 2007: ACM Symposium on Applied Computing, pp. 1067–1073 (2007)Google Scholar
  12. 12.
    Fua, Y.-H., Ward, M.O., Rundensteiner, E.A.: Hierarchical parallel coordinates for exploration of large datasets. In: IEEE Conference on Visualization 1999, pp. 43–50 (1999)Google Scholar
  13. 13.
    Kreuseler, M., Schumann, H.: Information visualization using a new focus+context technique in combination with dynamic clustering of information space. In: NPIVM 1999: The 1999 Workshop on New Paradigms in Information Visualization and Manipulation, pp. 1–5 (1999)Google Scholar
  14. 14.
    Inselberg, A., Dimsdale, B.: Parallel coordinates: a tool for visualizing multi-dimensional geometry. In: 1st IEEE Conference on Visualization 1990, pp. 361–378 (1990)Google Scholar
  15. 15.
    Vinnik, S., Mansmann, F.: From analysis to interactive exploration: Building visual hierarchies from OLAP cubes. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 496–514. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Antis, J.M., Eick, S.G., Pyrce, J.D.: Visualizing the structure of large relational databases. IEEE Software 13, 72–79 (1996)CrossRefGoogle Scholar
  17. 17.
    Xu, W., Gaither, K.P.: On Interactive Visualization with Relational Database, In: InfoVis 2008, Poster (2008)Google Scholar
  18. 18.
    Kadivar, N., Chen, V., Dunsmuir, D., Lee, E., Qian, C., Dill, J., Shaw, C., Woodbury, R.: Capturing and supporting the analysis process. In: IEEE Symposium on Visual Analytics Science and Technology, VAST 2009, pp. 131–138 (2009)Google Scholar
  19. 19.
    Maniatis, A.S., Vassiliadis, P., Skiadopoulos, S., Vassiliou, Y.: Advanced visualization for OLAP. In: DOLAP 2003: 6th ACM International Workshop on Data Warehousing and OLAP, pp. 9–16 (2003)Google Scholar
  20. 20.
    Rao, R., Card, S.K.: The table lens: merging graphical and symbolic representations in an interactive focus + context visualization for tabular information. In: CHI 1994: SIGCHI Conference on Human Factors in Computing Systems, pp. 318–322 (1994)Google Scholar
  21. 21.
    Kesaraporn, T., Amitava, D., Robyn, O.: HDDV: Hierarchical Dynamic Dimensional visualization for Multidimensional Data. In: IASTED 2004: International Conference on Databases and Applications, pp. 157–162 (2004)Google Scholar
  22. 22.
    Techapichetvanich, K., Datta, A.: Interactive visualization for OLAP. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005 Part III. LNCS, vol. 3482, pp. 206–214. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
  24. 24.
    Report Portal 2006: Zero-footprint olap web client solution XMLA consluting (2006), http://www.reportportal.com
  25. 25.
    Rundensteiner, E.A., Ward, M.O., Yang, J., Doshi, P.R.: XmdvTool: visual interactive data exploration and trend discovery of high-dimensional data sets. In: SIGMOD 2002: 2002 ACM SIGMOD International Conference on Management of Data, pp. 631–631 (2002)Google Scholar
  26. 26.
    Keim, D.A., Kriegel, H.-P., Ankerst, M.: Recursive pattern: a technique for visualizing very large amountsof data. In: Proc.1995 IEEE Conference on Visualization, pp. 279–286 (1995)Google Scholar
  27. 27.
    Allison, W., Chris, O., Alexander, A., Michael, C., Vuk, E., Mark, L., Mybrid, S., Michael, S.: DataSplash: A Direct Manipulation Environment for Programming Semantic Zoom Visualizations of Tabular Data. Journal of Visual Languages & Computing 12, 551–571 (2001)CrossRefGoogle Scholar
  28. 28.
    Peng, W., Ward, M.O., Rundensteiner, E.A.: Clutter Reduction in Multi-Dimensional Data Visualization Using Dimension Reordering. In: INFOVIS 2004: Proceedings of the IEEE Symposium on Information Visualization, pp. 89–96 (2004)Google Scholar
  29. 29.
    Ellis, G., Dix, A.: A Taxonomy of Clutter Reduction for Information Visualisation. IEEE Transactions on Visualization and Computer Graphics 13, 1216–1223 (2007)CrossRefGoogle Scholar
  30. 30.
    Han, J., Chen, Y., Dong, G., Pei, J., Wah, B.W., Wang, J., Cai, Y.D.: Stream Cube: An Architecture for Multi-Dimensional Analysis of Data Streams. Distributed and Parallel Databases 18, 173–197 (2005)CrossRefGoogle Scholar
  31. 31.
    Han, J., Pei, J., Dong, G., Wang, K.: Efficient Computation of Iceberg Cubes with Complex Measures. In: SIGMOD 2001 (2001)Google Scholar
  32. 32.
    Harris, M., Owens, J.D., Sengupta, S., Zhang, Y., Davidson, A.: CUDPP library (2007)Google Scholar
  33. 33.
    Lu, H., Huang, X., Li, Z.: Computing data cubes using massively parallel processors. In: Proc. 7th Parallel Computing Workshop (1997)Google Scholar
  34. 34.
    Dehne, F., Eavis, T., Hambrusch, S., Rau-Chaplin, A.: Parallelizing the Data Cube. Distributed and Parallel Databases 11, 181–201 (2002)zbMATHGoogle Scholar
  35. 35.
    Dehne, F., Eavis, T., Rau-Chaplin, A.: Computing Partial Data Cubes for Parallel Data Warehousing Applications. In: Cotronis, Y., Dongarra, J. (eds.) PVM/MPI 2001. LNCS, vol. 2131, pp. 319–326. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  36. 36.
    Amdrews, D.F.: Plots of high-dimensional data. Biometrics 29, 125–136 (1972)CrossRefGoogle Scholar
  37. 37.
    NVidia CUDA Programming Guide 2.0 (2008)Google Scholar
  38. 38.
    Harris, M.: Optimizing Parallel Reduction in CUDA (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Baoyuan Wang
    • 1
  • Gang Chen
    • 1
  • Jiajun Bu
    • 1
  • Yizhou Yu
    • 2
    • 1
  1. 1.Computer Science DepartmentZhejiang UniversityHangzhouChina
  2. 2.University of Illionis at Urbana-ChampaignUrbanaU.S.A.

Personalised recommendations