Non-linear Particle Systems for Scalable Simulation of Deformable Models

  • Athanasios Vogiannou
  • Konstantinos Moustakas
  • Dimitrios Tzovaras
  • Michael G. Strintzis
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 229)

Abstract

In this paper we present a new method for simulating deformable models that interact with external forces of large scale. The proposed method comprises an intuitive approximation of non-linear dynamics based on a full cubic polynomial formulation of the inter-particle force. This formulation is a non-physical extension of the well known St Venant Kirchhoff force, but focuses more on practical considerations about the behavior and the control over the model. The proposed method can be employed by virtually any dynamic model that is based on particle systems, facilitating their simplicity and the respective performance benefits, while it also demonstrates resistance and robustness to high compression. In addition, the presented force model can be easily parameterized for different application scenarios due to its intuitive nature and its direct relation to spring models. We present experimental simulations that demonstrate the scalability and robustness of the proposed method, while retaining performance comparable to simple mass-spring systems.

Keywords

Computer Graphic Particle System Deformable Model Spring Force Linear Spring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baraff, D., Witkin, A.: Large steps in cloth simulation. In: SIGGRAPH 1998, pp. 43–54 (1998)Google Scholar
  2. 2.
    Barbič, J., James, D.L.: Real-time subspace integration for St. Venant-Kirchhoff deformable models. ACM Transactions on Graphics (SIGGRAPH 2005) 24(3), 982–990 (2005)CrossRefGoogle Scholar
  3. 3.
    Bradley, D., Popa, T., Sheffer, A., Heidrich, W., Boubekeur, T.: Markerless garment capture. ACM Trans. Graph. 27(3), 1–9 (2008)CrossRefGoogle Scholar
  4. 4.
    Breen, D.E., House, D.H., Wozny, M.J.: Predicting the drape of woven cloth using interacting particles. In: SIGGRAPH 1994, pp. 365–372 (1994)Google Scholar
  5. 5.
    Bridson, R., Marino, S., Fedkiw, R.: Simulation of clothing with folds and wrinkles. In: SCA 2003: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 28–36 (2003)Google Scholar
  6. 6.
    Choi, K.J., Ko, H.S.: Stable but responsive cloth. ACM Trans. Graph. 21(3), 604–611 (2002)CrossRefGoogle Scholar
  7. 7.
    Choi, K.J., Ko, H.S.: Research problems in clothing simulation. Computer-Aided Design 37, 585–592 (2005)CrossRefGoogle Scholar
  8. 8.
    Decaudin, P., Julius, D., Wither, J., Boissieux, L., Sheffer, A., Cani, M.P.: Virtual garments: A fully geometric approach for clothing design. Computer Graphics Forum (Eurographics 2006 Proc.) 25(3) (September 2006)Google Scholar
  9. 9.
    Delingette, H.: Triangular springs for modeling nonlinear membranes. IEEE Transactions on Visualization and Computer Graphics 14(2), 329–341 (2008)CrossRefGoogle Scholar
  10. 10.
    Duriez, C., Dubois, F., Kheddar, A., Andriot, C.: Realistic haptic rendering of interacting deformable objects in virtual environments. IEEE Transactions on Visualization and Computer Graphics 12(1), 36–47 (2006)CrossRefGoogle Scholar
  11. 11.
    Etzmuss, O., Gross, J., Strasser, W.: Deriving a particle system from continuum mechanics for the animation of deformable objects. IEEE Transactions on Visualization and Computer Graphics 9(4), 538–550 (2003)CrossRefGoogle Scholar
  12. 12.
    Goldenthal, R., Harmon, D., Fattal, R., Bercovier, M., Grinspun, E.: Efficient simulation of inextensible cloth. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2007) 26(3) (2007)Google Scholar
  13. 13.
    Irving, G., Teran, J., Fedkiw, R.: Invertible finite elements for robust simulation of large deformation. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 131–140 (2004)Google Scholar
  14. 14.
    Irving, G., Schroeder, C., Fedkiw, R.: Volume conserving finite element simulations of deformable models. In: SIGGRAPH 2007, p. 13 (2007)Google Scholar
  15. 15.
    Kikuuwe, R., Tabuchi, H., Yamamoto, M.: An edge-based computationally efficient formulation of saint venant-kirchhoff tetrahedral finite elements. ACM Trans. Graph. 28(1), 1–13 (2009)CrossRefGoogle Scholar
  16. 16.
    Lloyd, B., Szekely, G., Harders, M.: Identification of spring parameters for deformable object simulation. IEEE Transactions on Visualization and Computer Graphics 13(5), 1081–1094 (2007)CrossRefGoogle Scholar
  17. 17.
    Moore, P., Molloy, D.: A survey of computer-based deformable models. In: IMVIP 2007: Proceedings of the International Machine Vision and Image Processing Conference, pp. 55–66 (2007)Google Scholar
  18. 18.
    Müller, M., Heidelberger, B., Teschner, M., Gross, M.: Meshless deformations based on shape matching. ACM Trans. Graph. 24(3), 471–478 (2005)CrossRefGoogle Scholar
  19. 19.
    Nealen, A., Mueller, M., Keiser, R., Boxerman, E., Carlson, M.: Physically based deformable models in computer graphics. Computer Graphics Forum 25(4), 809–836 (2006)CrossRefGoogle Scholar
  20. 20.
    Picinbono, G., Delingette, H., Ayache, N.: Non-linear anisotropic elasticity for real-time surgery simulation. Graph. Models 65(5), 305–321 (2003)CrossRefMATHGoogle Scholar
  21. 21.
    Provot, X.: Deformation constraints in a mass-spring model to describe rigid cloth behavior. In: Graphics Interface 1995, pp. 147–154 (1995)Google Scholar
  22. 22.
    Schmedding, R., Gissler, M., Teschner, M.: Optimized damping for dynamic simulations. In: Spring Conference on Computer Graphics, Budmerice, Slovakia, pp. 205–212 (2009)Google Scholar
  23. 23.
    Selle, A., Lentine, M., Fedkiw, R.: A mass spring model for hair simulation. ACM Trans. Graph. 27(3), 1–11 (2008)CrossRefGoogle Scholar
  24. 24.
    Selle, A., Su, J., Irving, G., Fedkiw, R.: Robust high-resolution cloth using parallelism, history-based collisions, and accurate friction. IEEE Transactions on Visualization and Computer Graphics 15(2), 339–350 (2009)CrossRefGoogle Scholar
  25. 25.
    Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elastically deformable models. In: SIGGRAPH 1987, pp. 205–214 (1987)Google Scholar
  26. 26.
    Volino, P., Faure, F., Magnenat-Thalmann, N.: Simple, yet accurate tensile stiffness. ACM Trans. Graph. 28(4) (2009)Google Scholar
  27. 27.
    Volino, P., Magnenat-Thalmann, N.: Simple linear bending stiffness in particle systems. In: SCA 2006: Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 101–105 (2006)Google Scholar
  28. 28.
    Volino, P., Thalmann, N.M.: Implementing fast cloth simulation with collision response. In: CGI 2000: Proceedings of the International Conference on Computer Graphics, p. 257 (2000)Google Scholar
  29. 29.
    Wu, Z., Au, C., Yuen, M.: Mechanical properties of fabric materials for draping simulation. International Journal of Clothing Science and Technology 15(1), 56–68 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Athanasios Vogiannou
    • 1
  • Konstantinos Moustakas
    • 1
  • Dimitrios Tzovaras
    • 1
  • Michael G. Strintzis
    • 1
    • 2
  1. 1.Informatics & Telematics InstituteCenter for Research and Technology HellasThessalonikiGreece
  2. 2.Electrical & Computer Engineering DepartmentAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations