Advertisement

Hardware-Dependent Proofs of Numerical Programs

  • Thi Minh Tuyen Nguyen
  • Claude Marché
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7086)

Abstract

We present an approach for proving behavioral properties of numerical programs by analyzing their compiled assembly code. We focus on the issues and traps that may arise on floating-point computations. Direct analysis of the assembly code allows us to take into account architecture- or compiler-dependent features such as the possible use of extended precision registers.

The approach is implemented on top of the generic Why platform for deductive verification, which allows us to perform experiments where proofs are discharged by combining several back-end automatic provers.

Keywords

Proof Obligation Assembly Code Numerical Program Loop Invariant Assembly Instruction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    IEEE standard for floating-point arithmetic. Technical report (2008), http://dx.doi.org/10.1109/IEEESTD.2008.4610935
  2. 2.
    Ayad, A., Marché, C.: Multi-Prover Verification of Floating-Point Programs. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp. 127–141. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Barnett, M., Leino, K.R.M.: Weakest-precondition of unstructured programs. In: 6th PASTE, New York, NY, USA, pp. 82–87. ACM (2005)Google Scholar
  4. 4.
    Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# Programming System: An Overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Barrett, C.W., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 298–302. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Barthe, G., Rezk, T., Saabas, A.: Proof Obligations Preserving Compilation. In: Dimitrakos, T., Martinelli, F., Ryan, P.Y.A., Schneider, S. (eds.) FAST 2005. LNCS, vol. 3866, pp. 112–126. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Baudin, P., Filliâtre, J.-C., Marché, C., Monate, B., Moy, Y., Prevosto, V.: ANSI/ISO C Specification Language (2009), http://frama-c.cea.fr/acsl.html
  8. 8.
    Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development. Springer, Heidelberg (2004)CrossRefzbMATHGoogle Scholar
  9. 9.
    Bobot, F., Conchon, S., Contejean, E., Iguernelala, M., Lescuyer, S., Mebsout, A.: The Alt-Ergo automated theorem prover (2008), http://alt-ergo.lri.fr/
  10. 10.
    Boldo, S., Filliâtre, J.-C.: Formal Verification of Floating-Point Programs. In: 18th ARITH, pp. 187–194 (June 2007)Google Scholar
  11. 11.
    Boldo, S., Marché, C.: Formal verification of numerical programs: from C annotated programs to mechanical proofs. In: Mathematics in Computer Science (2011)Google Scholar
  12. 12.
    Boldo, S., Nguyen, T.M.T.: Hardware-independent proofs of numerical programs. In: 2nd NASA Formal Methods Symposium, pp. 14–23 (April 2010)Google Scholar
  13. 13.
    Boldo, S., Nguyen, T.M.T.: Proofs of numerical programs when the compiler optimizes. Innovations in Systems and Software Engineering 7, 151–160 (2011)CrossRefGoogle Scholar
  14. 14.
    Boyer, R.S., Yu, Y.: Automated proofs of object code for a widely used microprocessor. J. ACM 43(1), 166–192 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J., Leavens, G.T., Leino, K.R.M., Poll, E.: An overview of JML tools and applications. Technical Report NIII-R0309, Dept. of Computer Science, University of Nijmegen (2003)Google Scholar
  16. 16.
    Burdy, L., Pavlova, M.: Java bytecode specification and verification. In: SAC, pp. 1835–1839. ACM (2006)Google Scholar
  17. 17.
    Carreño, V.A., Miner, P.S.: Specification of the IEEE-854 floating-point standard in HOL and PVS. In: HOL 1995 (September 1995)Google Scholar
  18. 18.
    Colby, C., Lee, P., Necula, G., Blau, F., Plesko, M., Cline, K.: A certifying compiler for Java. In: PLDI, pp. 95–107. ACM (2000)Google Scholar
  19. 19.
    Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.: The ASTREÉ Analyzer. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 21–30. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Cuoq, P., Prevosto, V.: Value Plugin Documentation, Carbon version. In: CEA-List (2011), http://frama-c.com/download/frama-c-value-analysis.pdf
  21. 21.
    de Moura, L., Bjørner, N.S.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Delmas, D., Goubault, E., Putot, S., Souyris, J., Tekkal, K., Védrine, F.: Towards an Industrial use of FLUCTUAT on Safety-Critical Avionics Software. In: Alpuente, M., Cook, B., Joubert, C. (eds.) FMICS 2009. LNCS, vol. 5825, pp. 53–69. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    Dowek, G., Muñoz, C.: Conflict detection and resolution for 1,2,.,N aircraft. In: 7th AIAA Aviation, Technology, Integration, and Operations Conference (2007)Google Scholar
  24. 24.
    Filliâtre, J.-C.: Formal Verification of MIX Programs. In: Journées en l’honneur de Donald E. Knuth (2007), http://knuth07.labri.fr/exposes.php
  25. 25.
    Filliâtre, J.-C., Marché, C.: The Why/Krakatoa/Caduceus Platform for Deductive Program Verification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 173–177. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  26. 26.
    Harrison, J.: Formal Verification of Floating Point Trigonometric Functions. In: Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS, vol. 1954, pp. 217–233. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  27. 27.
    Leavens, G.T.: Not a number of floating point problems. Journal of Object Technology 5(2), 75–83 (2006)CrossRefGoogle Scholar
  28. 28.
    Melquiond, G.: Proving Bounds on Real-Valued Functions with Computations. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 2–17. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  29. 29.
    Monniaux, D.: The pitfalls of verifying floating-point computations. Transactions on Programming Languages and Systems 30(3), 12 (2008)CrossRefGoogle Scholar
  30. 30.
    Moy, Y., Marché, C.: Jessie Plugin Tutorial, Beryllium version. INRIA (2009), http://www.frama-c.cea.fr/jessie.html
  31. 31.
    Myreen, M.O.: Formal verification of machine-code programs. PhD thesis, University of Cambridge (2008)Google Scholar
  32. 32.
    Nguyen, T.M.T., Marché, C.: Proving floating-point numerical programs by analysis of their assembly code. Research Report 7655, INRIA (2011), http://hal.inria.fr/inria-00602266/en/
  33. 33.
    Rival, X.: Abstract Interpretation-Based Certification of Assembly Code. In: Zuck, L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003. LNCS, vol. 2575, pp. 41–55. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  34. 34.
    Russinoff, D.M.: A mechanically checked proof of IEEE compliance of the floating point multiplication, division and square root algorithms of the AMD-K7 processor. LMS Journal of Computation and Mathematics 1, 148–200 (1998)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Thi Minh Tuyen Nguyen
    • 1
    • 2
  • Claude Marché
    • 1
    • 2
  1. 1.INRIA Saclay – Île-de-FranceOrsayFrance
  2. 2.Lab. de Recherche en InformatiqueUniv Paris-Sud, CNRSOrsayFrance

Personalised recommendations