Advertisement

Optical Mode-field Adaptation

  • Ulrich H. P. Fischer-Hirchert
Chapter

Abstract

The optical coupling between the various optical components requires low coupling loss and low reflection. Very often is the application of ray optics not useful, but the wave observation of light must be used. In most cases, the optical modes of the components (laser, fiber, waveguide) will be described in the form of a Gaussian distribution, and all coupling efficiencies will be calculated with the aid of an overlap integral. The biggest problem occurs by mechanical adjustment of the components and the long-term stability of the coupling.

Keywords

Gaussian Beam Coupling Efficiency Longitudinal Displacement Maximum Excitation Phase Front 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Agrawal, G.P.: Fiber-Optic Communications Systems. Wiley, New York (1992)Google Scholar
  2. Andersen, W.T.: Consistency of measurement methods for the mode field radius in a single-mode fiber. IEEE J. Lightwave Technol. 2(2), 191–197 (1984)CrossRefGoogle Scholar
  3. Bludau, W.: Lichtwellenleiter in Sensorik und optischer Nachrichtentechnik. Springer, Berlin (1998)Google Scholar
  4. G.650 I-TR (1994) Transmission media characteristics: definition and test methods for the relevant parameters of single-mode fibresGoogle Scholar
  5. Geckeler, S.: Lichtwellenleiter für die optische Nachrichtenübertragung. Springer, Berlin (1990)CrossRefGoogle Scholar
  6. Green, P.E.: Fibre Optic Networks: Prentice Hall. Englewood Cliffs, New Jersey 07632 (1993)Google Scholar
  7. He, Y., Shi, F.: Beam Propagation Method and Microlens Design for Optical Coupling. VDM Verlag Dr. Müller, Saarbrücken (2010)Google Scholar
  8. Ishii, M., Hibino, Y., Hanawa, F., Nakagome, H., Kato, K.: Packaging and environmental stability of thermally controlled arrayed-waveguide grating multiplexer module with thermoelectric device. J. Lightwave Technol. 16(2), 258 (1998)CrossRefGoogle Scholar
  9. Kawano, K., Saruwatari, M.: A new confocal combination lens methods for a laser-diode module using a single-mode-coupler. J. Lightwave Technol. LT-3(4), 739–745 (1985)Google Scholar
  10. Kogelnik, H.: Coupling and conversion coefficients for optical modes. Proc. Symp. Quasi-Opt 14, 333–347 (1964)Google Scholar
  11. Kogelnik, H.: On the propagation of Gaussian beams of light through lenslike media including those with a loss or gain variation. Appl. Opt. 4(12), 1562–1569 (1965)CrossRefGoogle Scholar
  12. Kogelnik, H.: Theory of Optical Waveguides. Springer, Berlin (1975)Google Scholar
  13. Kogelnik, H., Li, T.: Laser beams and resonators. Proc. IEEE 54, 1312–1329 (1966)CrossRefGoogle Scholar
  14. Kuhmann, J.: Untersuchung von Flip-Chip-Bondprozessen zur selbstjustierenden, flussmittelfreien Montage von OEICs. Ph.D. thesis/dissertation, Heinrich-Hertz-Institute, Berlin (1998)Google Scholar
  15. Mahlke, G., Gössing, P.: Lichtwellenleiterkabel. 4. Auflage edn. Publicis Corporate Publishing (1995)Google Scholar
  16. Marcuse, D.: Light Transmission Optics. Van Nostrand Reinhold, New York (1972)Google Scholar
  17. Marcuse, D.: Theory of Dielectric Waveguides. Academic Press, New York (1974)Google Scholar
  18. Marcuse, D.: Loss analysis of single-mode fiber splices. Bell Syst. Tech. J. 56, 15 (1977)Google Scholar
  19. Marcuse, D.: Gaussian approximation of the fundamental modes of graded-index fibers. J. Opt. Soc. AM 68(1), 103–109 (1978)CrossRefGoogle Scholar
  20. März, R.: Integrated Optics: Design and Modeling. Artech House, Boston (1995)Google Scholar
  21. Maxwell, J.C.: A Dynamical Theory of the Electromagnetic Field. Scottish Academy Press, Edinburgh (1982)Google Scholar
  22. Maxwell, J.C.: Über Faradays Kraftlinien (1855/1856). Ostwalds Klassiker der exakten Wissenschaften, vol. 69. Reprint [der Ausg. Leipzig, Akad. Verl.-Ges., 1898], 3. Aufl. edn. Deutsch, Frankfurt am Main (2001)Google Scholar
  23. Maxwell, J.C., Boltzmann, L.: Über Faradays Kraftlinien (1855/1856). Ostwalds Klassiker der exakten Wissenschaften, vol. 69, 44., erw. Aufl. edn. Deutsch, Frankfurt (2008)Google Scholar
  24. Maxwell, J.C., Boltzmann, L.: Über Faradays Kraftlinien (Trans. t. Camb. Phil. Soc., vol. 10, p. 27, gelesen am 10. Dec. 1–855 u. 11. Feb. 1856, Maxw. Scient. Pap., vol. 1, p. 155). Ostwald’s Klassiker d exakten Wiss, vol Nr 69, 2.Aufl.,unveränd.Nachdr. edn. Akad.Verl.-Ges., Leipzig (1895) Google Scholar
  25. Neumann, E.G.: Single-Mode Fiber: Fundamentals. Springer, Berlin (1998)Google Scholar
  26. Opielka, D.: Optische Nachrichtentechnik. Vieweg Verlag (1995)Google Scholar
  27. Petermann, K.: Microbending loss in monomode fibres. Electron. Lett. 12(4), 107–109 (1976)CrossRefGoogle Scholar
  28. Petermann, K.: Constraints for fundamental-mode spot size for broadband dispersion-compensated single-mode fibres. Electron. Lett. 19(18), 712–714 (1983)CrossRefGoogle Scholar
  29. Reider, G.: Photonik—Eine Einführung in die Grundlagen. Springer, Heidelberg (1997)Google Scholar
  30. Saruwatari, M., Kawate, K.: Semiconductor laser to single mode fiber coupler. Appl. Opt. 18(11), 1847–1856 (1979). doi: 10.1364/AO.18.001847 CrossRefGoogle Scholar
  31. Saruwatari, M., Nawata, K.: Semiconductor laser to single-mode fiber coupler. Appl. Opt. 18, 9 (1979)CrossRefGoogle Scholar
  32. Saruwatari, M., Sugie, T.: Efficient laser diode to single-mode fiber coupling using a combination of two lenses in confocal condition. IEEE J. Quantum Electron. 6, 7 (1981)Google Scholar
  33. Snyder, A.W., Love, J.D.: Optical Waveguide Theory. Chapman and Hall, New York (1983)Google Scholar
  34. Streckert, J., Brinkmeyer, E.: Characteristic parameters of monomode fibers. Appl. Opt. 21(11), 1910–1915 (1982)CrossRefGoogle Scholar
  35. Wengelink, J.: Photolithographie mit semitransparenten Masken, Ph.D., Cuvillier Verlag, Göttingen (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Photonic Communications LabHarz University of Applied SciencesWernigerodeGermany

Personalised recommendations