Fiber Optic Modules

Chapter

Abstract

In this chapter, different module structures are presented which are applied in commercial modules. Usually, module assemblies are classified into the following categories: (1) transmitter modules (laser) with and without cooling; (2) receiver module (photodiode); (3) mixed modules (transmitter or receiver); (4) multi-fiber modules (arrays). For each category, an example is shown in more detail in the following. Previously, however, it is necessary to provide some explanation of the used coupling method.

Keywords

Heat Sink Welding Spot Coupling Efficiency Fiber Coupling Arrayed Waveguide Grate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Eckhardt, T., Fischer, U.H.P., Ziegler, R.: DIL-size reusable modules with up to 50 GHz modulation bandwidth for optical communications systems. In: Faulkner, D.W., Harmer, A.L. (eds.) WDM and Photonic Networks, pp. 181–184. IOS Press, Netherlands (2000)Google Scholar
  2. Ehlers, H., Schlak, M., Fischer, U.H.P.: Multi-fiber-chip-coupling modules for monolithically integrated Mach-Zehnder interferometers for TDM/WDM communication systems. In: Conference on Optical Fiber Communication. Technical Digest Series, pp. WDD66/1–WDD66/3, Anaheim, CA (2001)Google Scholar
  3. Fischer, U.H.P., Zech, S., Peters, K.: Transmitter modules with reusable fiber-chip coupling method for optical communications systems. http://www.eetimes.com/design/communications-design/4017993/A-Reusable-Fiber-Chip-Coupling-Method-for-Optical-Communication-Transmitter-Modules (2001)
  4. Fischer, U.H.P.: Packaging of OEICs with tapered fibers for optical communications systems with up to 45 GHz modulation bandwidth. In: Proceedings of the European Conference on Networks and Optical Communications: Broadband Access and Technology, pp. 296–300 (1999)Google Scholar
  5. Hamacher, M., et al.: Monolithic integration of lasers, photodiodes, waveguides and spot size converters on GaInAsP/InP for photonic applications. In: InP and Related Materials Conference (IPRM 2000), paper MA1.3, pp. 21–24, Williamsburg USA (2000)Google Scholar
  6. ITU-T G652: Transmission systems and media. Digital systems and networks, Transmission media characteristics—optical fibre cables (2000)Google Scholar
  7. Ladany, I.: Laser to single-mode fiber coupling in the laboratory. Appl. Opt. 32, 3233–3236 (1993)CrossRefGoogle Scholar
  8. Peters, K.: DE 195 36 185.7 (1994a)Google Scholar
  9. Peters, K.: DE 195 36 173.3 (1994b)Google Scholar
  10. Fischer, UHP: Laser Micro Welding for Fiber-chip-coupling Modules with Lensed Fiber Ends for Photonic Communication Systems. 14th International Scientific Conference Mittweida, 8–11 November 2000Google Scholar
  11. Rohde, D., et al.: Optic/millimeter-wave converter for 60 GHz radio-over-fiber systems. In: MIOP ́97, Conference Proceedings, pp. 311–315 (1997)Google Scholar
  12. Rosin, T., Bornholdt, C., Hoffmann, D., Burghardt, R., Bornhold, C.: Opto-electronic packaging for broadband high speed (40 Gb/s) optical demultiplexer chip. In: LEOS 98, pp. 123–126, Orlando, Florida (1998)Google Scholar
  13. Tekin, T., Schlak, M., Brinker, W., Maul, B., Molt, R.: Monolithically integrated MZI comprising band gap shifted SOAs: a new switching scheme for generic all-optical signal processing. In: European Conference on Optical Communication (ECOC), pp. 123–124, München (2000)Google Scholar
  14. Umbach, A., Trommer, D., Siefke, A., Unterbörsch, G.: 50 GHz operation of waveguide integrated photodiode at 1.55 μm. In: Proceedings of the 21st ECOC, vol. 17, p. 1075, Brussels, Belgien, 21 Sept 1995Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Photonic Communications LabHarz University of Applied SciencesWernigerodeGermany

Personalised recommendations