Optical Motherboard

  • Ulrich H. P. Fischer-Hirchert
  • Ulrich Krzysztof Nieweglowski


In this chapter, the hybrid integration of optoelectronic components on a suitable substrate such as silicon, ceramic, glass, or PCB is set out in detail. So far, this technology is succeeded only in approaches to produce a wide range of applications with this technology. The large number of additional technologies such as flip chip technology, vapor deposition , and silica etching makes the production of complex component groups very expensive and complex. A potential approach to lower the complexity and hence the fabrication costs is the integration of optics into printed circuit boards. The key for wide adoption of optics on board-level is the development of compatible processes for integration and assembly. The chapter addresses these developments and shows the supremacy of PCB-integrated optics for applications where high energy efficiency and bandwidth density are particularly in demand.


Optical Coupling Optical Interconnect Waveguide Core Indirect Coupling Polymer Waveguide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Armiento, C.A., et al.: Hybrid optoelectronic integration of transmitter arrays on silicon waferboard. In: Proceedings of the SPIE, Intergrated Optoelectron is for Communication and Processing, pp. 112–120 (1991)Google Scholar
  2. BPA: Optical backplanes, a global market and technology review 2000–2005 (2000)Google Scholar
  3. Bakir, M.S., Glebov, A.L., Lee, M.G., Kohl, P.A., Meindl, J.D.: Mechanically flexible chip-to-substrate optical interconnections using optical pillars. Adv. Packag. IEEE Trans. 31, 143–153 (2008)CrossRefGoogle Scholar
  4. Bauer, J., Ebling, F., Schroeder, H., Beier, A., Beil, P., Demmer, P., Franke, M., Griese, E., Reuber, M., Kostelnik, J., Park, H., Mödinger, R., Pfeiffer, K., Ostrzinski, U.: Leiterplatten mit innenliegender Optolage - Wellenleitertechnologie und Koppelkonzept. Tagungsband des IV. ITG-Workshop Photonische Aufbau- und Verbindungstechnik (2005)Google Scholar
  5. Benjamin, Y., Hasharoni, K., Mesh, M.: Assembly development of 1.3 Tb/s full duplex optical module. In: Proceedings of the IEEE 63rd Electronic Components and Technology Conference (ECTC), pp. 292–296 (2013)Google Scholar
  6. Berger, C., Beyeler, R., Bona, G.-L., Dangel, R., Dellmann, L., Dill, P., Horst, F., Kossel, M.A., Menolfi, C., Morf, T., Offrein, B., Schmatz, M.L., Toifl, T., Weiss, J.: Optical links for printed circuit boards. In: 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society (LEOS 2003), pp. 61–62 (2003)Google Scholar
  7. Betschon, F., Michler, M., Craiovan, D., Halter, M., Dietrich, K., Kremmel, J., Franke, J., Gmür, M., Paredes, S.: Mass production of planar polymer waveguides and their applications. In: Proceeding of SPIE, p. 76070M. SPIE (2010)Google Scholar
  8. Booth, B.L., Marchegiano, J.E., Chang, C.T., Furmanak, R.J., Graham, D.M., Wagner, R.G.: Polyguide polymeric technology for optical interconnect circuits and components. In: Proceedings of the SPIE Photonics West Conference, pp. 238–251 (1997)Google Scholar
  9. Brusberg, L., Schroeder, H., Pitwon, R., Whalley, S., Herbst, C., Miller, A., Neitz, M., Röder, J., Lang, K.-D.: Optical backplane for board-to-board interconnection based on a glass panel gradient-index multimode waveguide technology. In: Proceedings of IEEE 63rd Electronic Components and Technology Conference (ECTC), pp. 260–267. IEEE (2013)Google Scholar
  10. Brusberg, L., Schroeder, H., Queisser, M., Lang, K.-D.: Single-mode glass waveguide platform for DWDM chip-to-chip interconnects. In: Proceedings of the IEEE 62nd Electronic Components and Technology Conference (ECTC), pp. 1532–1539. IEEE (2012)Google Scholar
  11. Chan, B., Lin, H., Carver, C., Huang, J., Berry, J.: Organic optical waveguide fabrication in a manufacturing environment. In: Proceedings of the IEEE 60th Electronic Components and Technology Conference (ECTC), pp. 2012–2018. IEEE (2010)Google Scholar
  12. Chang, G.-K., Guidotti, D., Liu, F., Chang, Y.-J., Huang, Z., Sundaram, V., Balaraman, D., Hegde, S., Tummala, R.R.: Chip-to-chip optoelectronics SOP on organic boards or packages. IEEE Trans. Adv. Packag. 27, 386–397 (2004)CrossRefGoogle Scholar
  13. Chappell, J., Hutt, D.A., Conway, P.P.: Variation in the line stability of an inkjet printed optical waveguide-applicable material. In: 2008 2nd Electronics System integration Technology Conference, pp. 1267–1272. IEEE (2008)Google Scholar
  14. Chen, Y.-M., Yang, C.-L., Cheng, Y.-L., Chen, H.-H., Chen, Y.-C., Chu, Y., Hsieh, T.-E.: 10Gbps multi-mode waveguide for optical interconnect. In: Proceedings of IEEE Electronic Components and Technology Conference (ECTC), pp. 1739–1743 (2005)Google Scholar
  15. Daele, P. Van, Geerinck, P., Steenberge, G. Van, Put, S. Van, Cauwe, M.: Laser ablation as an enabling technology for opto-boards. In: Proceedings of 53rd Electronic Components and Technology Conference, pp. 1140–1146 (2003)Google Scholar
  16. Dellmann, L., Berger, C., Beyeler, R., Dangel, R., Gmur, M., Hamelin, R., Horst, F., Lamprecht, T., Meier, N., Morf, T., et al.: 120 Gb/s optical card-to-card interconnect link demonstrator with embedded waveguides. In: Proceedings of the IEEE 57th Electronic Components and Technology Conference (ECTC), pp. 1288–1293 (2007)Google Scholar
  17. Doany, F.E., Lee, B.G., Rylyakov, A. V, Kuchta, D.M., Baks, C., Jahnes, C., Libsch, F., Schow, C.L.: Terabit/sec VCSEL-based parallel optical module based on holey CMOS transceiver IC. In: Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference (OFC/NFOEC), pp. 1–3 (2012a)Google Scholar
  18. Doany, F.E., Lee, B.G., Rylyakov, A. V, Kuchta, D.M., Jahnes, C., Baks, C., Libsch, F., Schow, C.L.: Terabit/sec 48-channel fiber-coupled optical module based on holey CMOS transceiver IC. In: Proceedings of the IEEE 62nd Electronic Components and Technology Conference (ECTC), pp. 1499–1504. IEEE (2012b)Google Scholar
  19. Doany, F.E., Schow, C.L., Lee, B.G., Budd, R., Baks, C., Dangel, R., John, R., Libsch, F., Kash, J.A., Chan, B., Lin, H., Carver, C., Huang, J., Berry, J., Bajkowski, D.: Terabit/sec-class board-level optical interconnects through polymer waveguides using 24-channel bidirectional transceiver modules. In: Proceedings of the IEEE 61st Electronic Components and Technology Conference (ECTC), pp. 790–797 (2011)Google Scholar
  20. Doany, F.E., Schow, C.L., Lee, B.G., Budd, R.A., Baks, C.W., Tsang, C.K., Knickerbocker, J.U., Dangel, R., Chan, B., Lin, H., Carver, C., Huang, J., Berry, J., Bajkowski, D., Libsch, F., Kash, J.A.: Terabit/s-class optical links incorporating 360-Gb/s bidirectional 850 nm parallel optical transceivers. J. Light. Technol. 30, 560–571 (2012c)Google Scholar
  21. Doany, F.E., Lee, B.G., Kuchta, D.M., Rylyakov, A.V., Baks, C., Jahnes, C., Libsch, F., Schow, C.L.: Terabit/Sec VCSEL-based 48-channel optical module based on holey CMOS transceiver IC. J. Lightwave Technol. 31, 672–680 (2013)CrossRefGoogle Scholar
  22. Dumke, M., Craiovan, D., Rieske, R., Franke, J., Overmeyer, L., Wolter, K.-J.: Innovative Produktionsverfahren zur drucktechnischen Herstellung 3D-geführter optischer Wellenleiter. In: Proceedings—112. Jahrestagung der Deutschen Gesellschaft für angewandte Optik (DGaO 2011) (2011)Google Scholar
  23. Fields, M.H., Foley, J., Kaneshiro, R., McColloch, L., Meadowcroft, D., Miller, F.W., Nassar, S., Robinson, M., Xu, H.: Transceivers and optical engines for computer and datacenter interconnects. In: Optical Fiber Communication (OFC), Collocated National Fiber Optic Engineers Conference, 2010 Conference on (OFC/NFOEC), pp. 1–2 (2010)Google Scholar
  24. Franc, J., Destouches, N., Blanc, D., Pommier, J.-C., Tonchev, S., Steenberge, G. Van, Hendrickx, N., Last, A., Parriaux, O.: High-efficiency diffraction grating coupler for multimode optical interconnect. In: Proceedings of SPIE—Photonics Europe. p. 61851F. SPIE (2006)Google Scholar
  25. Franke, M., Schiefelbein, F.-P.: Optical interconnects on level—results based on the German funded project OptiCon. In: Proceedings of the IEEE 54th Electronic Components and Technology Conference (ECTC), pp. 1542–1546 (2004)Google Scholar
  26. Fujiwara, M., Shirato, Y., Owari, H., Watanabe, K., Matsuyama, M., Takahama, K., Mori, T., Miyao, K., Choki, K., Fukushima, T., Tanaka, T., Koyanagi, M.: Novel optical/electrical printed circuit board with polynorbornene optical waveguide. Jpn. J. Appl. Phys. 46, 2395–2400 (2007)CrossRefGoogle Scholar
  27. Glebov, A.L., Roman, J., Lee, M.G., Yokouchi, K.: Optical interconnect modules with fully integrated reflector mirrors. Photonics Technol. Lett. IEEE. 17, 1540–1542 (2005)CrossRefGoogle Scholar
  28. Hendrickx, N., Erps, J. Van, Alajoki, T., Destouches, N., Blanc, D., Franc, J., Karioja, P.: Towards Low Cost Coupling Structures for Short-Distance Optical Interconnections. In: Proceedings of the 16th European Microelectronics and Packaging Conference (EMPC), pp. 247–252 (2007)Google Scholar
  29. Hendrickx, N., Van Erps, J., Thienpont, H., Van Daele, P.: Out-of-plane coupling structures for optical printed circuit boards. In: Optical Fiber communication/National Fiber Optic Engineers Conference, Conference on OFC/NFOEC, pp. 1–3 (2008)Google Scholar
  30. Himmelhuber, R., Fink, M., Pfeiffer, K., Ostrzinski, U., Klukowska, A., Gruetzner, G., Houbertz, R., Wolter, H.: Innovative materials tailored for advanced micro-optic applications. In: Proceedings of the SPIE, Photonics Package Integration Interconnects VII. pp. 6478, 64780E–1–12 (2007)Google Scholar
  31. Hofmann, W., Müller, M., Nadtochiy, A., Meltzer, C., Mutig, A., Böhm, G., Rosskopf, J., Bimberg, D., Amann, M.-C., Chang-Hasnain, C.: 22-Gb/s long VCSELs. Opt. Express 17, 17547–17554 (2009)CrossRefGoogle Scholar
  32. Hofmann, W., Müller, M., Wolf, P., Mutig, A., Gründl, T., Böhm, G., Bimberg, D., Amann, M.-C.: 40 Gbit/s modulation of 1550 nm VCSEL. Electron. Lett. 47, 270–271 (2011)CrossRefGoogle Scholar
  33. Honnecker, J.: Untersuchung der Koppeleffizienz und der Reflexion zwischen Monomodefasern und integrierten Modenfeldtransformern auf InP auf LWL-Emüfängern im Bereich zwischen 40-160 Gbit/s (2000)Google Scholar
  34. Immonen, M., Wu, J., Kivilahti, J.: Fabrication of polymer with integrated micromirrors for out-of-plane surface normal optical interconnects. In: 4th IEEE International Conference on POLYTRONIC 2004, Polymers and Adhesives in Microelectronics and Photonics, pp. 206–210 (2004)Google Scholar
  35. Ishii, Y., Koike, S., Arai, Y., Ando, Y.: Compatible large-tolerance “OptoBump” interface for interchip optical interconnections. IEEE Trans. Adv. Packag. 26, 122–127 (2003)CrossRefGoogle Scholar
  36. Ito, Y., Terada, S., Singh, M.K., Arai, S., Choki, K.: Demonstration of high-bandwidth data transmission above 240 Gbps for optoelectronic module with low-loss and low-crosstalk polynorbornene waveguides. In: Proceedings IEEE 62nd Electronic Components and Technology Conference (ECTC), pp. 1526–1531. IEEE (2012)Google Scholar
  37. Karppinen, M., Alajoki, T., Tanskanen, A., Kataja, K., Makinen, J.-T., Kautio, K., Karioja, P., Immonen, M., Kivilahti, J.: Parallel optical interconnect between ceramic BGA packages on FR4 board using embedded waveguides and passive optical alignments. In: Proceedings of IEEE 56th Electronic Components and Technology Conference (ECTC) (2006)Google Scholar
  38. Karppinen, M., Makinen, J.-T., Kataja, K., Tanskanen, A., Alajoki, T., Karioja, P., Immonen, M., Kivilahti, J.: Embedded optical interconnect on printed wiring board. In: Proceedings of the SPIE Vol. 5453 Micro-Optics, VCSELs, and Photonic Interconnects, pp. 150–164 (2004)Google Scholar
  39. Karppinen, M.: High bit-rate optical interconnects on printed wiring board—micro-optics and hybrid integration (2008)Google Scholar
  40. Kash, J.A., Benner, A.F., Doany, F.E., Kuchta, D.M., Lee, B.G., Pepeljugoski, P.K., Schares, L., Schow, C.L., Taubenblatt, M.: Optical interconnects in exascale supercomputers. In: 23rd Annual Meeting of the IEEE Photonics Society, pp. 483–484 (2010)Google Scholar
  41. Kuchta, D.M., Rylyakov, A.V., Schow, C.L., Proesel, J.E., Baks, C.W., Westbergh, P.; Gustavsson, J.S., Larsson, A.: 64 Gb/s transmission over 57 m MMF using an NRZ modulated 850 nm VCSEL. In: Proceedings of the Optical Fiber Communications Conference (OFC) (2014)Google Scholar
  42. Langer, G.: Integrated Optical Interconnections - R&D project IOI. Austria Technologie & Systemtechnik (AT&S) (2010)Google Scholar
  43. Lauer, C., Maute, M., Hofmann, W., Amann, M-C.: VCSELs emerge as low-cost alternatives to edge-emitters. In: Laser Focus World, June, pp. 127–131 (2005)Google Scholar
  44. Lunitz, B., Guttmann, J., Huber, H.-P., Moisel, J., Rode, M.: Experimental demonstration of 2.5 Gbit/s transmission with 1 m polymer optical backplane. Electron. Lett. 37, 1079 (2001)CrossRefGoogle Scholar
  45. Mekis, A., Gloeckner, S., Masini, G., Narasimha, A., Pinguet, T., Sahni, S., De Dobbelaere, P.: A grating-coupler-enabled CMOS photonics platform. Sel. Top. Quantum Electron. IEEE J. 17, 597–608 (2011)CrossRefGoogle Scholar
  46. Morris, R.C.: Silicon on insulator integrated optic transceivers. In: Proceedings of the SPIE. pp. 56–67 (1997)Google Scholar
  47. Moynihan, M.L., Allen, C., Ho, T., Little, L., Pawlowski, N., Pugliano, N., Shelnut, J.G., Sicard, B., Zheng, H. Bin, Khanarian, G.: Hybrid inorganic-organic aqueous base compatible waveguide materials for optical interconnect applications. In: Proceedings of the SPIE, pp. 50–60 (2003)Google Scholar
  48. mrt: Dataheet: ORMOCER Materialsystem für planare optische Wellenleitung, (2008)
  49. Müller, L.: Polymere für in Abformtechnik hergestellte Integriert-Optische Lichtleiter (2000)Google Scholar
  50. Narasimha, A., Abdalla, S., Bradbury, C., Clark, A., Clymore, J., Coyne, J., Dahl, A., Gloeckner, S., Gruenberg, A., Guckenberger, D., Gutierrez, S., Harrison, M., Kucharski, D., Leap, K., LeBlanc, R., Liang, Y., Mack, M., Martinez, D., Masini, G., Mekis, A., Menigoz, R., Ogden, C., Peterson, M., Pinguet, T., Redman, J., Rodriguez, J., Sahni, S., Sharp, M., Sleboda, T.J., Song, D., Wang, Y., Welch, B., Witzens, J., Xu, W., Yokoyama, K., De Dobbelaere, P.: An ultra low power CMOS photonics technology platform for H/S optoelectronic transceivers at less than 1 per Gbps. In: Optical Fiber Communication (OFC), Collocated National Fiber Optic Engineers Conference, 2010 Conference on (OFC/NFOEC), pp. 1–3 (2010)Google Scholar
  51. Neyer, A., Kopetz, S., Rabe, E., Kang, W.J., Tombrink, S.: Electrical-optical circuit board using polysiloxane optical waveguide layer. In: Proceedings of 55th Electronic Components and Technology Conference, pp. 246–250 (2005)Google Scholar
  52. Nieweglowski, K., Henker, R., Ellinger, F., Wolter, K.-J.: Performance of step index multimode waveguides with tuned numerical aperture for on-board optical links. In: Proceedings of SPIE, Optical Interconnects XIV, ser., vol. 8991, pp. 05:1–05:10 (2014)Google Scholar
  53. Nieweglowski, K., Rieske, R., Wolter, K.-J.: Assembly requirements for multi-channel coupling micro-optics in board-level optical interconnects. In: Proceedings of 3rd Electronics System-Integration Technology Conference (ESTC), pp. 1–6 (2010)Google Scholar
  54. Nieweglowski, K., Rieske, R., Wolter, K.-J.: Demonstration of board-level optical link with ceramic optoelectronic multi-chip module. In: Proceedings IEEE 59th Electronic Components and Technology Conference (ECTC), pp. 1879–1886 (2009)Google Scholar
  55. Ortsiefer, M., Hofmann, W., Roenneberg, E., Boletti, A., Gatto, A., Boffi, P., Rosskopf, J., Shau, R., Neumeyr, C., Boehm, G., et al.: High speed 1.3 μm VCSELs for 12.5 Gbit/s optical interconnects. Electron. Lett. 44, 974–975 (2008)Google Scholar
  56. Rho, B.S., Kang, S., Cho, H.S., Park, H.-H., Ha, S.-W., Rhee, B.-H.: Compatible optical interconnection using 45°-ended connection rods and via-holed waveguides. J. Light. Technol. 22, 2128–2134 (2004)CrossRefGoogle Scholar
  57. Schaub, J.D., Csutak, S.M., Yang, B., Campbell, J.C., Rogers, D.L., Yang, M., Kuchta, D.M., Zier, S.J., Sorna, M.: High-speed optical receivers in advanced silicon technologies. In: The 15th Annual Meeting of the IEEE, Lasers and Electro-Optics Society, LEOS 2002, pp. 772–773 (2002)Google Scholar
  58. Schaub, J.D., Li, R., Schow, C.L., Campbell, J.C., Neudeck, G.W., Denton, J.: Resonant-cavity-enhanced high-speed Si photodiode grown by epitaxial lateral overgrowth. IEEE Photonics Technol. Lett. 11, 1647–1649 (1999)CrossRefGoogle Scholar
  59. Schaub, J.D.: CMOS detectors enable optical interconnects. In: Laser Focus World, pp. 109–112 (2004)Google Scholar
  60. Schmid, G., Leeb, W.R., Langer, G., Schmidt, V., Houbertz, R.: Gbit/s transmission via-inscribed on printed circuit boards. Electron. Lett. 45, 219–221 (2009)CrossRefGoogle Scholar
  61. Schmieder, K.: Aspekte der Aufbau- und Verbindungstechnik Elektro-Optischer Verdrahtungsträger. Verlag Dr. Markus A. Detert, Templin (2003)Google Scholar
  62. Schow, C., Doany, F., Kash, J.: Get on the Optical Bus. IEEE Spectr., 47(9), pp. 32–35, 52–56 (2010)Google Scholar
  63. Schroeder, H., Amdt-Staufenbiel, N., Cygon, M., Scheel, W.: Planar glass waveguides for high performance electrical-optical-circuit-boards (ECTC)-the glass-layer-concept. In: Proceedings of IEEE 53rd Electronic Components and Technology Conference (ECTC), pp. 1053–1059 (2003)Google Scholar
  64. Schroeder, H., Arndt-Staufenbiel, N., Beier, A., Ebling, F., Franke, M., Griese, E., Intemann, S., Kostelnik, J., Kuhler, T., Mödinger, R., Others: Thin glass based electrical-optical circuit boards (EOCB) using ion-exchange technology for graded-index multimode waveguides. In: Proceedings of the IEEE 58th Electronic Components and Technology Conference (ECTC), pp. 268–275 (2008)Google Scholar
  65. Schroeder, H., Ebling, F., Strake, E., Himmler, A.: Heißgeprägte Polymerwellenleiter für elektrisch-optische Schaltungsträger (EOCB) - Technologie und Charakterisierung. DVS/GMM-Tagung Elektronische Baugruppen - Aufbau- und Fertigungstechnik, Fellbach. pp. 51–59 (2002)Google Scholar
  66. Schroeder, H., Arndt-Staufenbiel, N., Ebling, F., Franke, M., Beier, A., Demmer, P., Söllau, W., Kostelnik, J., Mödinger, R., Pfeiffer, K., Ostrzinski, U., Griese, E.: Temperaturstabile Wellenleiter und optische Kopplung für elektro-optische Leiterplatten. DVS/GMM-Tagung “Elektronische Baugruppen und Aufbau- und Fertigungstechnik,” pp. 93–98 (2006)Google Scholar
  67. Seemann, R., Kramer, E.J., Lange, F.F.: Patterning of polymers: precise channel stamping by optimizing wetting properties. New J. Phys. 6, 111 (2004)CrossRefGoogle Scholar
  68. Shen, L.-C., Lo, W.-C., Chang, H.-H., Fu, H.-C., Lee, Y.-C., Chang, S.-M., Chen, Y.-C., Chen, W.-Y.: Flexible electronic-optical local bus modules to the board-to-board, board-to-chip, and chip-to-chip optical interconnection. In: Proceedings of the IEEE 55th Electronic Components and Technology Conf. (ECTC). pp. 1039–1043 (2005)Google Scholar
  69. Trommer, D., et al: A novel, flexible and easy to use technique for fabrication of optical spot size converters for InP based PICs. In: 11th International Conference on Indium Phosphide and Related Materials: Conference Proceedings : May 16–20, 1999, Congress Center Davos. p. Postdeadline Papers, pp. 12–14. Davos, Switzerland (1999)Google Scholar
  70. Van Steenberge, G., Geerinck, P., Van Put, S., Van Koetsem, J., Ottevaere, H., Morlion, D., Thienpont, H., Van Daele, P.: MT-compatible laser-ablated interconnections for optical printed circuit boards. Lightwave Technol. J. 22, 2083–2090 (2004)CrossRefGoogle Scholar
  71. Yoshimura, R., Hikita, M., Tomaru, S., Imamura, S.: Very low loss multimode polymeric. Electron. Lett. 33, 1240–1242 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ulrich H. P. Fischer-Hirchert
    • 1
  • Ulrich Krzysztof Nieweglowski
    • 2
  1. 1.Photonic Communications LabHarz University of Applied SciencesWernigerodeGermany
  2. 2.Electronics Packaging LaboratoryDresden University of TechnologyDresdenGermany

Personalised recommendations