Diagnosis of Multi-Agent Systems and Its Application to Public Administration

  • Alexander Boer
  • Tom van Engers
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 97)

Abstract

In this paper we present a model-based diagnosis view on the complex social systems in which large public administration organizations operate. The purpose of diagnosis as presented in this paper is to identify agent role instances that are not conforming to expectations in a multi-agent system (MAS). To this end, we introduce model-based diagnosis of an imperfectly observable multi-agent system. We propose the model-based diagnosis problem as an explanation of major driving forces behind policy making, and requests for change to IT and business process design departments, in public administration. This makes model-based diagnosis a useful legal knowledge acquisition model for public administration.

Keywords

Business Process Multiagent System Public Administration Fault Mode Health Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boella, G., Pigozzi, G., van der Torre, L.: Five guidelines for normative multiagent systems. In: Proceeding of the 2009 Conference on Legal Knowledge and Information Systems, pp. 21–30. IOS Press, Amsterdam (2009)Google Scholar
  2. 2.
    Boer, A., van Engers, T.: Generic problem solving tasks and agent roles in public administration. In: Winkels, R. (ed.) Legal Knowledge and Information Systems. Jurix 2010: The Twenty-Third Annual Conference. IOS Press (December 2010)Google Scholar
  3. 3.
    Boer, A., van Engers, T.: Knowledge acquisition in public administration. In: Cimiano, P., Pinto, H.S. (eds.) EKAW 2010. LNCS, vol. 6317, Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Boer, A., van Engers, T.: An agent-based legal knowledge acquisition methodology for agile public administration. In: ICAIL 2011: Proceedings of the 13th International Conference on Artificial Intelligence and Law. ACM, New York (to be published, 2011) Google Scholar
  5. 5.
    Bordini, R., Hübner, J., Vieira, R.: Jason and the golden fleece of agent-oriented programming. In: Weiss, G., Bordini, R., Dastani, M., Dix, J., Fallah Seghrouchni, A. (eds.) Multi-Agent Programming, Multiagent Systems, Artificial Societies, And Simulated Organizations, vol. 15, pp. 3–37. Springer, Heidelberg (2005), http://dx.doi.org/10.1007/0-387-26350-0-1, doi:10.1007/0-387-26350-0-1Google Scholar
  6. 6.
    Breuker, J.: Components of problem solving and types of problems. In: Steels, L., Van de Velde, W., Schreiber, G. (eds.) EKAW 1994. LNCS, vol. 867, pp. 118–136. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  7. 7.
    Chandrasekaran, B., Johnson, T.R.: Generic tasks and task structures: History, critique and new directions. In: David, J.M., Krivine, J.P., Simmons, R. (eds.) Second Generation Expert Systems. Springer, Heidelberg (1993)Google Scholar
  8. 8.
    Clancey, W.J.: Heuristic classification. Artificial Intelligence 27, 289–350 (1985)CrossRefGoogle Scholar
  9. 9.
    Dastani, M.M., van Riemsdijk, M.B., Hulstijn, J., Dignum, F.P.M., Meyer, J.-J.C.: Enacting and deacting roles in agent programming. In: Odell, J.J., Giorgini, P., Müller, J.P. (eds.) AOSE 2004. LNCS, vol. 3382, pp. 189–204. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence 77(2), 321–357 (1995), http://www.sciencedirect.com/science/article/B6TYF-4031CDM-P/2/b6a314405d7de8cafd03b1f4f457235e CrossRefGoogle Scholar
  11. 11.
    Fonagy, P., Target, M.: Attachment and reflective function: Their role in self-organization. Development and Psychopathology 9(04), 679–700 (1997), http://dx.doi.org/10.1017/S0954579497001399 CrossRefGoogle Scholar
  12. 12.
    Gong, Y., Janssen, M.: Agent-based simulation for evaluating flexible and agile business processes: Separating knowledge rules, process rules and information resources. In: Aalst, W., Mylopoulos, J., Sadeh, N.M., Shaw, M.J., Szyperski, C., Barjis, J. (eds.) EOMAS 2010. LNBIP, vol. 63, pp. 41–58. Springer, Heidelberg (2010), http://dx.doi.org/10.1007/978-3-642-15723-3-4, 10.1007CrossRefGoogle Scholar
  13. 13.
    Gong, Y., Overbeek, S., Janssen, M.: Business rules for creating process flexibility: Mapping RIF rules and BDI rules. In: 1st International Workshop on Web Intelligent Systems and Services, WISS 2010 (in print, 2011)Google Scholar
  14. 14.
    Grandon Gill, T.: Early expert systems: Where are they now? MIS Quarterly 19(1), 51–81 (1995)CrossRefGoogle Scholar
  15. 15.
    Greiner, R., Smith, B.A., Wilkerson, R.W.: A correction to the algorithm in reiter’s theory of diagnosis. Artificial Intelligence 41(1), 79–88 (1989), http://www.sciencedirect.com/science/article/B6TYF-47WTTF0-69/2/f6804b2a121735af3b2a03c9b440e121 CrossRefGoogle Scholar
  16. 16.
    Jennings, N.R.: Commitments and conventions: The foundation of coordination in multiagent systems. Knowledge Engineering Review (1993)Google Scholar
  17. 17.
    Kalech, M., Kaminka, G.A.: On the design of coordination diagnosis algorithms for teams of situated agents. Artificial Intelligence 171(8-9), 491–513 (2007), http://www.sciencedirect.com/science/article/B6TYF-4NB99GY-2/2/1011c067c72d15338a29a6c0657ae8da CrossRefGoogle Scholar
  18. 18.
    Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32(1), 57–95 (1987), http://www.sciencedirect.com/science/article/B6TYF-47WTTBS-4T/2/b2d7b5acbca6116be93d292e56ee81aa CrossRefGoogle Scholar
  19. 19.
    Roos, N., ten Teije, A., Witteveen, C.: A protocol for multi-agent diagnosis with spatially distributed knowledge. In: Proceedings of the Second International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS 2003, pp. 655–661. ACM, New York (2003), http://doi.acm.org/10.1145/860575.860681 CrossRefGoogle Scholar
  20. 20.
    Singh, P.: Examining the society of mind. Computing and Informatics 22, 521–543 (2004)Google Scholar
  21. 21.
    Steels, L.: Components of expertise. AI Mag. 11(2), 30–49 (1990)Google Scholar
  22. 22.
    Witteveen, C., Roos, N., van der Krogt, R., de Weerdt, M.: Diagnosis of single and multi-agent plans. In: Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS 2005, pp. 805–812. ACM, New York (2005), http://doi.acm.org/10.1145/1082473.1082596 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Alexander Boer
    • 1
  • Tom van Engers
    • 1
  1. 1.University of Amsterdam/Leibniz Center for LawThe Netherlands

Personalised recommendations