Purchase Intent, Online Offers and Product Innovation: Misunderstandings in the Ménage à Trois

  • Davor Meersman
  • Christophe Debruyne
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 97)


We discuss a semantic platform that matches a customer’s purchase intent against vendor offers. The customers’ perception on particular products, including evolving needs and preferences, were captured in a request and product ontology, in turn used to annotate vendor offers. During the project, however, we observed an important gap between the intent descriptions of users and the available data in product descriptions. We argue that through the inclusion of peripheral data, vendors are able to innovate according to customer preference, and users receive increasingly relevant results. We present a method that is essentially a customer-driven innovation system using product innovation ontologies.


product ontology product innovation online commerce purchase intent peripheral data 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Böhms, M.: The SWOP Semantic Product Modelling Approach. In: SWOP project deliverable 23. SWOP (2006), (accessed on June 14, 2010)
  2. 2.
    Christensen, C.M., Anthony, S.D., Berstell, G., Nitterhouse, D.: Finding the Right Job For Your Product. MIT Sloan Management Review 3, 38–47 (2007)Google Scholar
  3. 3.
    Cillo, P.: Market learning capability and innovation. An explorative empirical study in the fashion industry. In: Proceedings of the 3rd International Congress Marketing Trends, Venice (2003)Google Scholar
  4. 4.
    De Leenheer, P.: On Community-based Ontology Evolution. PhD Thesis, Vrije Universiteit Brussel (2008)Google Scholar
  5. 5.
    Debruyne, C., Meersman, D., Baert, M., Hansenne, R.: Community Driven Requests for Proposals: Applying Semantics to match a Customer’s Intent to Annotated Vendor Data. In: Proceedings of the 7th International Conference on Web Information Systems and Technologies (to appear)Google Scholar
  6. 6.
    Dell’Erba, M., Fodor, O., Ricci, F., Werthner, H.H.: A solution for data interoperability. In: Monteiro, J.L., Swatman, P.M.C., Valadares Tavares, L. (eds.) I3E. IFIP Conference Proceedings, vol. 233. Kluwer (2002)Google Scholar
  7. 7.
    McDonald, S., Lamberton, D., Mandeville, T. (eds.): The Trouble with Technology. Explorations in the Process of Technological Change. Frances Printer Publishers Limited, London (1983)Google Scholar
  8. 8.
    Gruber, T.R.: Toward principles of the design of ontologies used for knowledge sharing. International Journal of Human and Computer (1995)Google Scholar
  9. 9.
    Guarino, N.: Formal ontology and information systems. In: Int. Conference On Formal Ontology In Information Systems, FOIS 1998, Trento (1998)Google Scholar
  10. 10.
    Halpin, T.: Information Modeling and Relational Databases. Morgan Kaufmann, San Francisco (2008)Google Scholar
  11. 11.
    Hepp, M.: The True Complexity of Product Representation in the Semantic Web. In: Proceedings of the 14th European Conference on Information System (ECIS 2006), Gothenburg, Sweden, pp. 1–12 (2006)Google Scholar
  12. 12.
    Hepp, M., Leukel, J., Schmitz, V.: A quantitative analysis of product categorization standards: content, coverage, and maintenance of eCL@SS, UNSPSC, EOTD, and the RosettaNet technical dictionary. Knowledge Information Systems (2007)Google Scholar
  13. 13.
    Hepp, M.: Possible Ontologies: How Reality Constrains the Development of Relevant Ontologies. IEEE Internet Computing 1, 90–96 (2007)CrossRefGoogle Scholar
  14. 14.
    Hepp, M.: GoodRelations: An Ontology for Describing Products and Services Offers on the Web. In: Proceedings of the 16th International Conference on Knowledge Engineering and Knowledge Management, EKAW, pp. 332–347 (2008)Google Scholar
  15. 15.
    Jarrar, M., Meersman, R.: Ontology engineering – the DOGMA approach. In: Dillon, T.S., Chang, E., Chung, S., Sycara, K. (eds.) Advances in Web Semantics I. LNCS, vol. 4891. Springer, Heidelberg (2008)Google Scholar
  16. 16.
    Meersman, D., Dillon, T.S.: The Open Innovation Paradigm and the Semantic Web: An Ontology for Distributed Product Innovation. In: Proceedings of OTM Workshops 2010 (2010)Google Scholar
  17. 17.
    Paukert, M., Niederée, C., Muscogiuri, C., Bouquet, P., Hemmje, M.: Knowledge in the Innovation Process: An Empirical Study for Validating the Innovation Knowledge Life Cycle. In: Proceedings of the 4th European Conference on Knowledge Management, ECKM, pp. 725–737 (2003)Google Scholar
  18. 18.
    Sure, Y., Staab, S., Studer, R.: Ontology engineering methodology. In: Bernus, P., Blazewicz, J., Schmidt, G.J., Shaw, M.J., Staab, S., Studer, R. (eds.) Handbook on Ontologies, International Handbooks on Information Systems (2009)Google Scholar
  19. 19.
    Vegetti, M., Henning, G.P., Leone, H.P.: Product ontology: definition of an ontology for the complex product modelling domain. In: Proceedings of the Mercosur Congress on Process Systems Engineering (2005), (accessed on: May 26, 2010)
  20. 20.
    Verheyden, P., De Bo, J., Meersman, R.: Semantically Unlocking Database Content Through Ontology-Based Mediation. In: Bussler, C.J., Tannen, V., Fundulaki, I. (eds.) SWDB 2004. LNCS, vol. 3372, pp. 109–126. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Wintraecken, J.: The NIAM Information Analysis Method, Theory and Practice. Kluwer Academic Publishers (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Davor Meersman
    • 1
  • Christophe Debruyne
    • 2
  1. 1.Digital Ecosystems and Business Intelligence InstituteCurtin UniversityBentleyAustralia
  2. 2.Semantics Technology and Applications Research LabVrije UniversiteitBrusselBelgium

Personalised recommendations