(Ir)reversibility and Entropy

Part of the Abel Symposia book series (ABEL, volume 7)

Abstract

In the 1860’s emerges a revolutionary idea: many properties of the world around us can be explained by combining the atomistic hypothesis with the statistical theory. Some of the great scientific conquests from this time are the Boltzmann equation, which triggers one of the first qualitative studies of a complicated nonlinear partial differential equation; the notion of statistical entropy, which would later be fundamental in other areas of physics and mathematics, including information theory; and the notion of macroscopic irreversibility emerging from microscopically reversible laws. Thus the basic rules of statistical physics were set until Boltzmann’s irreversibility paradigm was shaken by Landau’s discovery of the Landau damping effect, about 80 years later, which opened the idea that equilibration is compatible with preservation of information, and led to a number of problems concerning the statistical theory of matter.

Keywords

Boltzmann Equation Entropy Production Collision Operator Vlasov Equation Microscopic Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Alexandre, R., Desvillettes, L., Villani, C., Wennberg, B.: Entropy dissipation and long-range interactions. Arch. Ration. Mech. Anal. 152, 327–355 (2000) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Alexandre, R., Villani, C.: On the Boltzmann equation for long-range interaction and the Landau approximation in plasma physics. Commun. Pure Appl. Math. 55(1), 30–70 (2002) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Alexandre, R., Villani, C.: On the Landau approximation in plasma physics. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 21(1), 61–95 (2004) MathSciNetMATHGoogle Scholar
  4. 4.
    Ambrosio, L., Gangbo, W.: Hamiltonian ODE’s in the Wasserstein space of probability measures. Commun. Pure Appl. Math. 51, 18–53 (2007) MathSciNetGoogle Scholar
  5. 5.
    Arkeryd, L., Esposito, R., Pulvirenti, M.: The Boltzmann equation for weakly inhomogeneous data. Commun. Math. Phys. 111(3), 393–407 (1987) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Backus, G.: Linearized plasma oscillations in arbitrary electron distributions. J. Math. Phys. 1, 178–191, 559 (1960) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Balescu, R.: Irreversible processes in ionized gases. Phys. Fluids 3, 52–63 (1960) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Balescu, R.: Statistical Mechanics of Charged Particles. Wiley-Interscience, New York (1963) MATHGoogle Scholar
  9. 9.
    Balian, R.: Entropy, a protean concept. In: Poincaré Seminar 2, pp. 119–145. Birkhäuser, Basel (2003) Google Scholar
  10. 10.
    Balian, R.: Information in statistical physics. Stud. Hist. Philos. Mod. Phys. 36, 323–353 (2005) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Baranger, C., Mouhot, C.: Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials. Rev. Mat. Iberoam. 21, 819–841 (2005) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Batt, J., Rein, G.: Global classical solutions of the periodic Vlasov–Poisson system in three dimensions. C. R. Acad. Sci. Paris, Sér. I Math. 313(6), 411–416 (1991) MathSciNetMATHGoogle Scholar
  13. 13.
    Ben Arous, G., Zeitouni, O.: Increasing propagation of chaos for mean field models. Ann. Inst. Henri Poincaré Probab. Stat. 35(1)s, 85–102 (1999) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Bernstein, I.B., Greene, J.M., Kruskal, M.D.: Exact nonlinear plasma oscillations. Phys. Rev. 108(3), 546–550 (1957) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Binney, J., Tremaine, S.: Galactic Dynamics, 2nd edn. Princeton Series in Astrophysics. Princeton University Press, Princeton (2008) MATHGoogle Scholar
  16. 16.
    Bobylev, A.V., Cercignani, C.: On the rate of entropy production for the Boltzmann equation. J. Stat. Phys. 94(3–4), 603–618 (1999) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Bobylev, A.V., Cercignani, C.: Exact eternal solutions of the Boltzmann equation. J. Stat. Phys. 106(5–6), 1019–1038 (2002) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Bobylev, A.V., Cercignani, C.: Self-similar solutions of the Boltzmann equation and their applications. J. Stat. Phys. 106(5–6), 1039–1071 (2002) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Bogoliubov, N.N.: Problems of a dynamical theory in statistical physics. Stud. Stat. Mech. 1, 1–118 (1962). Translation from the 1946 Russian original MathSciNetGoogle Scholar
  20. 20.
    Bolley, F., Guillin, A., Villani, C.: Quantitative concentration inequalities for empirical measures on non-compact spaces. Probab. Theory Relat. Fields 137(3–4), 541–593 (2007) MathSciNetMATHGoogle Scholar
  21. 21.
    Boltzmann, L.: Weitere Studien über das Wärmegleichgewicht unter Gasmoläkülen. Sitzungsber. Akad. Wiss. 66, 275–370 (1872). Traduction: Further studies on the thermal equilibrium of gas molecules. In: Brush, S.G. (ed.) Kinetic Theory, vol. 2, pp. 88–174. Pergamon, Oxford (1966) MATHGoogle Scholar
  22. 22.
    Boltzmann, L.: Lectures on Gas Theory. University of California Press, Berkeley (1964). English translation by Stephen G. Brush. Reprint of the 1896–1898 edition. Dover Publications, 1995 Google Scholar
  23. 23.
    Bouchut, F.: Introduction à la théorie mathématique des équations cinétiques. In: Bouchut, F., Golse, F., Pulvirenti, M. (eds.) Kinetic Equations and Asymptotic Theory. Session “L’Etat de la Recherche” de la SMF, 1998. Series in Appl. Math. Gauthier-Villars, Paris (2000) Google Scholar
  24. 24.
    Braun, W., Hepp, K.: The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles. Commun. Math. Phys. 56, 125–146 (1977) MathSciNetCrossRefGoogle Scholar
  25. 25.
    Caglioti, E., Maffei, C.: Time asymptotics for solutions of Vlasov–Poisson equation in a circle. J. Stat. Phys. 92(1–2), 301–323 (1998) MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Carleman, T.: Sur la théorie de l’equation intégrodifférentielle de Boltzmann. Acta Math. 60, 369–424 (1932) Google Scholar
  27. 27.
    Carleman, T.: Problèmes Mathématiques dans la Théorie Cinétique des Gaz. Almqvist & Wiksell, Stockholm (1957) MATHGoogle Scholar
  28. 28.
    Carlen, E.A., Carvalho, M.C.: Strict entropy production bounds and stability of the rate of convergence to equilibrium for the Boltzmann equation. J. Stat. Phys. 67(3–4), 575–608 (1992) MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Carlen, E.A., Carvalho, M.C., Gabetta, E.: Central limit theorem for Maxwellian molecules and truncation of the Wild expansion. Commun. Pure Appl. Math. 53, 370–397 (2000) MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Carlen, E.A., Carvalho, M.C., Gabetta, E.: On the relation between rates of relaxation and convergence of Wild sums for solutions of the Kac equation. J. Funct. Anal. 220, 362–387 (2005) MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Carlen, E.A., Carvalho, M.C., Loss, M.: Determination of the spectral gap for Kac’s master equation and related stochastic evolution. Acta Math. 191, 1–54 (2003) MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Carlen, E.A., Carvalho, M.C., Le Roux, J., Loss, M., Villani, C.: Entropy and chaos in the Kac model. Kinet. Relat. Models 3(1), 85–122 (2010) MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Carlen, E.A., Gabetta, E., Toscani, G.: Propagation of smoothness and the rate of exponential convergence to equilibrium for a spatially homogeneous Maxwellian gas. Commun. Math. Phys. 199(3), 521–546 (1999) MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Carlen, E.A., Lu, M.: Fast and slow convergence to equilibrium Maxwellian molecules via Wild sums. J. Stat. Phys. 112(1–2), 59–134 (2003) MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Carleson, L.: Some analytic problems related to statistical mechanics. In: Benedetto, J.J. (ed.) Euclidean Harmonic Analysis, Univ. of Maryland. Lecture Notes in Math., vol. 779, pp. 5–45 (1979) CrossRefGoogle Scholar
  36. 36.
    Cercignani, C.: On the Boltzmann equation with cutoff potentials. Phys. Fluids 10, 2097 (1967) CrossRefGoogle Scholar
  37. 37.
    Cercignani, C.: On the Boltzmann equation for rigid spheres. Transp. Theory Stat. Phys. 2(3), 211–225 (1972) MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Cercignani, C.: The Boltzmann Equation and Its Applications. Springer, New York (1988) MATHCrossRefGoogle Scholar
  39. 39.
    Cercignani, C.: Rarefied Gas Dynamics. Cambridge University Press, Cambridge (2000). From basic concepts to actual calculations MATHGoogle Scholar
  40. 40.
    Cercignani, C., Illner, R., Pulvirenti, M.: The Mathematical Theory of Dilute Gases. Springer, New York (1994) MATHGoogle Scholar
  41. 41.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory. A Wiley-Interscience Publication. Wiley, New York (1991). MATHCrossRefGoogle Scholar
  42. 42.
    Delcroix, J.-L., Bers, A.: Physique des plasmas, vol. 2. InterEditions/CNRS Éditions, Paris (1994) Google Scholar
  43. 43.
    Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications, 2nd edn. Springer, New York (1998) MATHCrossRefGoogle Scholar
  44. 44.
    Desvillettes, L.: Entropy dissipation rate and convergence in kinetic equations. Commun. Math. Phys. 123(4), 687–702 (1989) MathSciNetMATHCrossRefGoogle Scholar
  45. 45.
    Desvillettes, L., Villani, C.: On the spatially homogeneous Landau equation for hard potentials. Part I: existence, uniqueness and smoothness. Commun. Partial Differ. Equ. 25(1–2), 179–259 (2000) MathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    Desvillettes, L., Villani, C.: On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation. Invent. Math. 159(2), 245–316 (2005) MathSciNetMATHCrossRefGoogle Scholar
  47. 47.
    DiPerna, R., Lions, P.-L.: On the Cauchy problem for the Boltzmann equation: global existence and weak stability. Ann. of Math. (2) 130, 312–366 (1989) MathSciNetCrossRefGoogle Scholar
  48. 48.
    Dobrušin, R.L.: Vlasov equations. Funkc. Anal. Prilozh. 13(2), 48–58, 96 (1979) Google Scholar
  49. 49.
    Dudley, R.M.: Real Analysis and Probability. Cambridge Studies in Advanced Mathematics, vol. 74. Cambridge University Press, Cambridge (2002). Revised edition of the 1989 original MATHCrossRefGoogle Scholar
  50. 50.
    Filbet, F., Mouhot, C., Pareschi, L.: Solving the Boltzmann equation in Nlog2 N. SIAM J. Sci. Comput. 28(3), 1029–1053 (2006) MathSciNetMATHCrossRefGoogle Scholar
  51. 51.
    Glassey, R.T.: The Cauchy Problem in Kinetic Theory. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1996) MATHCrossRefGoogle Scholar
  52. 52.
    Glassey, R., Schaeffer, J.: Time decay for solutions to the linearized Vlasov equation. Transp. Theory Stat. Phys. 23(4), 411–453 (1994) MathSciNetMATHCrossRefGoogle Scholar
  53. 53.
    Glassey, R., Schaeffer, J.: On time decay rates in Landau damping. Commun. Partial Differ. Equ. 20(3–4), 647–676 (1995) MathSciNetMATHCrossRefGoogle Scholar
  54. 54.
    OTTHER Golse, F.: From kinetic to macroscopic models. In: Bouchut, F., Golse, F., Pulvirenti, M. (eds.) Kinetic Equations and Asymptotic Theory. Session “L’Etat de la Recherche” de la SMF, 1998. Series in Appl. Math. Gauthier-Villars, Paris (2000) Google Scholar
  55. 55.
    Golse, F., Saint-Raymond, L.: The Navier–Stokes limit of the Boltzmann equation for bounded collision kernels. Invent. Math. 155(1), 81–161 (2004) MathSciNetMATHCrossRefGoogle Scholar
  56. 56.
    Grad, H.: On Boltzmann’s H-theorem. J. Soc. Ind. Appl. Math. 13(1), 259–277 (1965) MathSciNetCrossRefGoogle Scholar
  57. 57.
    Grad, H.: Principles of the kinetic theory of gases. In: Flügge’s Handbuch des Physik, vol. XII, pp. 205–294. Springer, Berlin (1958) Google Scholar
  58. 58.
    Gualdani, M.P., Mischler, S., Mouhot, C.: Factorization for non-symmetric operators and exponential H-theorem. Preprint. Available online at http://hal.archives-ouvertes.fr/ccsd-00495786
  59. 59.
    Guo, Y.: The Landau equation in a periodic box. Commun. Math. Phys. 231, 391–434 (2002) MATHCrossRefGoogle Scholar
  60. 60.
    Guo, Y., Strain, R.M.: Exponential decay for soft potentials near Maxwellian. Arch. Ration. Mech. Anal. 187(2), 287–339 (2008) MathSciNetMATHCrossRefGoogle Scholar
  61. 61.
    Illner, R., Pulvirenti, M.: Global validity of the Boltzmann equation for a two-dimensional rare gas in vacuum. Commun. Math. Phys. 105(2), 189–203 (1986). “Erratum and improved result”, Comm. Math. Phys. 121(1), 143–146 (1989) MathSciNetMATHCrossRefGoogle Scholar
  62. 62.
    Illner, R., Pulvirenti, M.: A derivation of the BBGKY-hierarchy for hard sphere particle systems. Transp. Theory Stat. Phys. 16(7), 997–1012 (1987) MathSciNetMATHCrossRefGoogle Scholar
  63. 63.
    Isichenko, M.: Nonlinear Landau damping in collisionless plasma and inviscid fluid. Phys. Rev. Lett. 78(12), 2369–2372 (1997) CrossRefGoogle Scholar
  64. 64.
    Jabin, P.-E., Hauray, M.: N-particles approximation of the Vlasov equations with singular potential. Arch. Ration. Mech. Anal. 183(3), 489–524 (2007) MathSciNetMATHCrossRefGoogle Scholar
  65. 65.
    Janvresse, E.: Spectral gap for Kac’s model of Boltzmann equation. Ann. Probab. 29(1), 288–304 (2001) MathSciNetMATHCrossRefGoogle Scholar
  66. 66.
    Kac, M.: Foundations of kinetic theory. In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. III, Berkeley and Los Angeles, 1956, pp. 171–197. University of California Press, Berkeley, (1956) Google Scholar
  67. 67.
    Landau, L.D.: Die kinetische Gleichung für den Fall Coulombscher Wechselwirkung. Phys. Z. Sowjetunion 10, 154 (1936). English translation: The transport equation in the case of Coulomb interactions. In: Collected Papers of L.D. Landau, edited and with an introduction by D. ter Haar, Pergamon Press, pp. 163–170 (1965) MATHGoogle Scholar
  68. 68.
    Landau, L.D.: On the vibration of the electronic plasma. J. Phys. USSR 10, 25 (1946). English translation in JETP 16, 574. Reprinted in Collected Papers of L.D. Landau, edited with an introduction by D. ter Haar, pp. 445–460. Pergamon Press, 1965; and in Men of Physics: L.D. Landau, vol. 2, Pergamon Press, D. ter Haar, ed. (1965) MATHGoogle Scholar
  69. 69.
    Lanford, O.E.: Time evolution of large classical systems. In: Dynamical Systems, Theory and Applications, Recontres, Battelle Res. Inst., Seattle, Wash., 1974, pp. 1–111. Lecture Notes in Phys., vol. 38. Springer, Berlin (1975). CrossRefGoogle Scholar
  70. 70.
    Lenard, A.: On Bogoliubov’s kinetic equation for a spatially homogeneous plasma. Ann. Phys. 10, 390–400 (1960) MathSciNetMATHCrossRefGoogle Scholar
  71. 71.
    Lifshitz, E.M., Pitaevskiĭ, L.P.: Course of Theoretical Physics [“Landau–Lifshits”], vol. 10. Pergamon Press, Oxford (1981). Translated from the Russian by J.B. Sykes and R.N. Franklin Google Scholar
  72. 72.
    Lin, Z., Zeng, C.: BGK waves and nonlinear Landau damping. Preprint (2010) Google Scholar
  73. 73.
    Liverani, C., Olla, S.: Toward the Fourier law for a weakly interacting anharmonic crystal. Preprint (2010) Google Scholar
  74. 74.
    Loschmidt, J.: Über den Zustand des Wärmegleichgewichtes eines Systems von Körpern mit Rücksicht auf die Schwerkraft. Wien. Ber. 73, 128 (1876) Google Scholar
  75. 75.
    Lynden-Bell, D.: The stability and vibrations of a gas of stars. Mon. Not. R. Astron. Soc. 124(4), 279–296 (1962) MATHGoogle Scholar
  76. 76.
    Lynden-Bell, D.: Statistical mechanics of violent relaxation in stellar systems. Mon. Not. R. Astron. Soc. 136, 101–121 (1967) Google Scholar
  77. 77.
    Malmberg, J., Wharton, C.: Collisionless damping of electrostatic plasma waves. Phys. Rev. Lett. 13(6), 184–186 (1964) CrossRefGoogle Scholar
  78. 78.
    Malmberg, J., Wharton, C., Gould, R., O’Neil, T.: Plasma wave echo experiment. Phys. Rev. Lett. 20(3), 95–97 (1968) CrossRefGoogle Scholar
  79. 79.
    Maslen, D.: The eigenvalues of Kac’s master equation. Math. Z. 243, 291–331 (2003) MathSciNetMATHCrossRefGoogle Scholar
  80. 80.
    Maxwell, J.C.: On the dynamical theory of gases. Philos. Trans. R. Soc. Lond. Ser. A 157, 49–88 (1867) CrossRefGoogle Scholar
  81. 81.
    McKean, H.J.: Speed of approach to equilibrium for Kac’s caricature of a Maxwellian gas. Arch. Ration. Mech. Anal. 21, 343–367 (1966) MathSciNetCrossRefGoogle Scholar
  82. 82.
    Mouhot, C.: Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials. Commun. Math. Phys. 261, 629–672 (2006) MathSciNetMATHCrossRefGoogle Scholar
  83. 83.
    Mouhot, C., Strain, R.M.: Spectral gap and coercivity estimates for linearized Boltzmann collision operators without angular cutoff. J. Math. Pures Appl. 87(5), 515–535 (2007) MathSciNetMATHGoogle Scholar
  84. 84.
    Mouhot, C., Villani, C.: Regularity theory for the spatially homogeneous Boltzmann equation with cut-off. Arch. Ration. Mech. Anal. 173(2), 169–212 (2004) MathSciNetMATHCrossRefGoogle Scholar
  85. 85.
    Mouhot, C., Villani, C.: On Landau damping. Acta Math. doi: 10.1007/s11511-011-0068-9. Available on line at arXiv:0904.2760
  86. 86.
    O’Neil, T.: Collisionless damping of nonlinear plasma oscillations. Phys. Fluids 8(12), 2255–2262 (1965) MathSciNetCrossRefGoogle Scholar
  87. 87.
    Neunzert, H.: An introduction to the nonlinear Boltzmann–Vlasov equation. In: Cercignani, C. (ed.) Kinetic Theories and the Boltzmann Equation, pp. 60–110. Lecture Notes in Math., vol. 1048. Springer, Berlin (1984) CrossRefGoogle Scholar
  88. 88.
    Penrose, O.: Electrostatic instability of a non-Maxwellian plasma. Phys. Fluids 3, 258–265 (1960) MATHCrossRefGoogle Scholar
  89. 89.
    Poincaré, H.: Le mécanisme et l’expérience. Rev. Métaphys. Morale I, 534–537 (1893) Google Scholar
  90. 90.
    OTTHER Pulvirenti, M.: From particle to transport equations. In: Bouchut, F., Golse, F., Pulvirenti, M. (eds.) Kinetic Equations and Asymptotic Theory. Session “L’Etat de la Recherche” de la SMF, 1998. Series in Appl. Math. Gauthier-Villars, Paris (2000) Google Scholar
  91. 91.
    Robert, R.: Statistical mechanics and hydrodynamical turbulence. In: Proceedings of the International Congress of Mathematicians, vols. 1, 2, Zürich, 1994, pp. 1523–1531. Birkhäuser, Basel (1995) CrossRefGoogle Scholar
  92. 92.
    Ryutov, D.D.: Landau damping: half a century with the great discovery. Plasma Phys. Control. Fusion 41, A1–A12 (1999) CrossRefGoogle Scholar
  93. 93.
    Saint-Raymond, L.: Hydrodynamic Limits of the Boltzmann Equation. Lectures at SISSA, Trieste, 2006. Lecture Notes in Math., vol. 1971. Springer, Berlin (2009) MATHCrossRefGoogle Scholar
  94. 94.
    Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. University of Illinois Press, Urbana (1949) MATHGoogle Scholar
  95. 95.
    Spohn, H.: Large Scale Dynamics of Interacting Particles. Texts and Monographs in Physics. Springer, Berlin, (1991) MATHCrossRefGoogle Scholar
  96. 96.
    Strain, R.M.: On the linearized Balescu–Lenard equation. Commun. Partial Differ. Equ. 32, 1551–1586 (2007) MathSciNetMATHCrossRefGoogle Scholar
  97. 97.
    Sturm, K.-Th.: Entropic measure on multidimensional spaces. In: Dalang, R., Dozzi, M., Russo, F. (eds.) Stochastic Analysis, Random Fields and Applications VI. Progress in Probability. Birkhäuser, Basel (2011) Google Scholar
  98. 98.
    Sznitman, A.-S.: Equations de type de Boltzmann, spatialement homogènes. Z. Wahrscheinlichkeitstheor. Verw. Geb. 66, 559–562 (1984) MathSciNetMATHCrossRefGoogle Scholar
  99. 99.
    Sznitman, A.-S.: Topics in propagation of chaos. In: École d’Été de Probabilités de Saint-Flour, XIX, 1989, pp. 165–251. Lecture Notes in Math., vol. 1464. Springer, Berlin (1991) CrossRefGoogle Scholar
  100. 100.
    Tanaka, H.: An inequality for a functional of probability distributions and its application to Kac’s one-dimensional model of a Maxwellian gas. Z. Wahrscheinlichkeitstheor. Verw. Geb. 27, 47–52 (1973) MATHCrossRefGoogle Scholar
  101. 101.
    Toscani, G., Villani, C.: Sharp entropy dissipation bounds and explicit rate of trend to equilibrium for the spatially homogeneous Boltzmann equation. Commun. Math. Phys. 203(3), 667–706 (1999) MathSciNetMATHCrossRefGoogle Scholar
  102. 102.
    Turkington, B.: Statistical equilibrium measures and coherent states in two-dimensional turbulence. Commun. Pure Appl. Math. 52(7), 781–809 (1999) MathSciNetCrossRefGoogle Scholar
  103. 103.
    Villani, C.: A review of mathematical topics in collisional kinetic theory. In: Friedlander, S., Serre, D. (eds.) Handbook of Mathematical Fluid Dynamics I, pp. 71–305. North-Holland, Amsterdam (2002) CrossRefGoogle Scholar
  104. 104.
    Villani, C.: Cercignani’s conjecture is sometimes true and always almost true. Commun. Math. Phys. 234, 455–490 (2003) MathSciNetMATHCrossRefGoogle Scholar
  105. 105.
    Villani, C.: Mathematics of granular materials. J. Stat. Phys. 124(2–4), 781–822 (2006) MathSciNetMATHCrossRefGoogle Scholar
  106. 106.
    Villani, C.: H-theorem and beyond: Boltzmann’s entropy in today’s mathematics. In: Conference Proceedings “Boltzmann’s Legacy”. Erwin-Schrödinger Institute, Vienna (2007) Google Scholar
  107. 107.
    Villani, C.: Hypocoercive diffusion operators. Text of my Lecture International Congress of Mathematicians, Madrid (2006) Google Scholar
  108. 108.
    Villani, C.: Entropy production and convergence to equilibrium. Notes pour une série de cours à l’Institut Henri Poincaré, Paris, automne 2001. In: Entropy Methods for the Boltzmann Equation, pp. 1–70. Lecture Notes in Math., vol. 1916. Springer, Berlin (2008) CrossRefGoogle Scholar
  109. 109.
    Villani, C.: Hypocoercivity. Mem. Am. Math. Soc. 202, 950 (2009) MathSciNetGoogle Scholar
  110. 110.
    Villani, C.: Landau damping. Lecture notes, CEMRACS 2010. Available at www.math.univ-lyon1.fr/~villani
  111. 111.
    Villani, C.: Is there any backward solution of the Boltzmann equation? Unpublished work, available at www.math.univ-lyon1.fr/~villani
  112. 112.
    Vlasov, A.A.: On the oscillation properties of an electron gas. Zh. Èksp. Teor. Fiz. 8, 291–318 (1938) MATHGoogle Scholar
  113. 113.
    Zermelo, E.: Über einen Satz der Dynamik und die mechanische Wärmetheorie. Ann. Phys. 54, 485–494 (1896) CrossRefGoogle Scholar
  114. 114.
    Horst, E.: On the asymptotic growth of the solutions of the Vlasov–Poisson system. Math. Methods Appl. Sci. 16, 75–86 (1993) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.University of Lyon and Institut Henri PoincaréParis Cedex 05France

Personalised recommendations