Skip to main content

Nonlinear Diffusion with Fractional Laplacian Operators

  • Conference paper

Part of the book series: Abel Symposia ((ABEL,volume 7))

Abstract

We describe two models of flow in porous media including nonlocal (long-range) diffusion effects. The first model is based on Darcy’s law and the pressure is related to the density by an inverse fractional Laplacian operator. We prove existence of solutions that propagate with finite speed. The model has the very interesting property that mass preserving self-similar solutions can be found by solving an elliptic obstacle problem with fractional Laplacian for the pair pressure-density. We use entropy methods to show that these special solutions describe the asymptotic behavior of a wide class of solutions.

The second model is more in the spirit of fractional Laplacian flows, but nonlinear. Contrary to usual Porous Medium flows (PME in the sequel), it has infinite speed of propagation. Similarly to them, an L 1-contraction semigroup is constructed and it depends continuously on the exponent of fractional derivation and the exponent of the nonlinearity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abe, S., Thurner, S.: Anomalous diffusion in view of Einstein’s 1905 theory of Brownian motion. Physica A 356(2–4), 403–407 (2005)

    Article  Google Scholar 

  2. Ambrosio, L., Mainini, E., Serfaty, S.: Gradient flow of the Chapman–Rubinstein–Schatzman model for signed vortices. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 28(2), 217–246 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosio, L., Serfaty, S.: A gradient flow approach to an evolution problem arising in superconductivity. Commun. Pure Appl. Math. 61(11), 1495–1539 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Applebaum, D.: Lévy Processes and Stochastic Calculus, 2nd edn. Cambridge Studies in Advanced Mathematics, vol. 116. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  5. Aronson, D.G.: The porous medium equation. In: Nonlinear Diffusion Problems Montecatini Terme, 1985. Lecture Notes in Math., vol. 1224, pp. 1–46. Springer, Berlin (1986)

    Chapter  Google Scholar 

  6. Athanasopoulos, I., Caffarelli, L.A.: Optimal regularity of lower dimensional obstacle problems. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 310 (2004); Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 35(34), 49–66, 226; translation in J. Math. Sci. (N.Y.) 132(3), 274–284 (2006)

    Google Scholar 

  7. Athanasopoulos, I., Caffarelli, L.A.: Continuity of the temperature in boundary heat control problem. Adv. Math. 224(1), 293–315 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Athanasopoulos, I., Caffarelli, L.A., Salsa, S.: The structure of the free boundary for lower dimensional obstacle problems. Am. J. Math. 130(2), 485–498 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bachelier, L.: Théorie de la spéculation. Ann. Sci. Éc. Norm. Super. 3(17), 21–86 (1900)

    MathSciNet  Google Scholar 

  10. Barenblatt, G.I.: On self-similar motions of a compressible fluid in a porous medium. Akad. Nauk SSSR, Prikl. Mat. Meh. 16, 679–698 (1952) (in Russian)

    MathSciNet  MATH  Google Scholar 

  11. Bass, R.F., Kassmann, M.: Harnack inequalities for non-local operators of variable order. Trans. Am. Math. Soc. 357(2), 837–850 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bass, R.F., Levin, D.A.: Harnack inequalities for jump processes. Potential Anal. 17(4), 375–388 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bendahmane, M., Karlsen, K.H.: Renormalized entropy solutions for quasi-linear anisotropic degenerate parabolic equations. SIAM J. Math. Anal. 36(2), 405–422 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bertoin, J.: Lévy processes. Cambridge Tracts in Mathematics, vol. 121. Cambridge University Press, Cambridge (1996). ISBN: 0-521-56243-0

    MATH  Google Scholar 

  15. Bertozzi, A.L., Laurent, T.: The behavior of solutions of multidimensional aggregation equations with mildly singular interaction kernels. Chin. Ann. Math., Ser. B 30(5), 463–482 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bertozzi, A.L., Carrillo, J.L., Laurent, T.: Blow-up in multidimensional aggregation equations with mildly singular interaction kernels. Nonlinearity 22(3), 683–710 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bertozzi, A.L., Laurent, T., Rosado, J.: L p theory for the multidimensional aggregation equation. Commun. Pure Appl. Math. 64(1), 45–83 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Biler, P., Imbert, C., Karch, G.: Fractal porous media equation. arXiv:1001.0910

  19. Biler, P., Karch, G., Monneau, R.: Nonlinear diffusion of dislocation density and self-similar solutions. Commun. Math. Phys. 294(1), 145–168 (2010). MR2575479

    Article  MathSciNet  MATH  Google Scholar 

  20. Blumenthal, R.M., Getoor, R.K.: Some theorems on stable processes. Trans. Am. Math. Soc. 95(2), 263–273 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bonforte, M., Dolbeault, J., Grillo, G., Vázquez, J.L.: Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities. Proc. Natl. Acad. Sci. USA 107(38), 16459–16464 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Caffarelli, L.A.: Further regularity for the Signorini problem. Commun. Partial Differ. Equ. 4, 1067–1075 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  23. Caffarelli, L.A., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32(7–9), 1245–1260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Caffarelli, L.A., Vasseur, A.: Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. Math. 171, 1903–1930 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Caffarelli, L.A., Vázquez, J.L.: Nonlinear porous medium flow with fractional potential pressure. Arch. Ration. Mech. Anal. 202, 537–565 (2011). doi:10.1007/s00205-011-0420-4. arXiv:1001.0410v2.

    Article  MathSciNet  MATH  Google Scholar 

  26. Caffarelli, L.A., Vázquez, J.L.: Asymptotic behaviour of a porous medium equation with fractional diffusion. Discrete Contin. Dyn. Syst., Ser. A 29(4), 1393–1404 (2011). A special issue “Trends and Developments in DE/Dynamics, Part III”

    MATH  Google Scholar 

  27. Caffarelli, L.A., Salsa, S., Silvestre, L.: Regularity estimates for the solution and the free boundary to the obstacle problem for the fractional Laplacian. Invent. Math. 171(2), 425–461 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Caffarelli, L., Chan, C.-H., Vasseur, A.: Regularity theory for nonlinear integral operators. J. Am. Math. Soc. 24, 849–869 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Caffarelli, L.A., Soria, F., Vázquez, J.L.: Regularity of solutions of the fractional porous medium flow (in preparation)

    Google Scholar 

  30. Carrillo, J.A., Toscani, G.: Asymptotic L 1-decay of solutions of the porous medium equation to self-similarity. Indiana Univ. Math. J. 49, 113–141 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. Cifani, S., Jakobsen, E.R.: Entropy solution theory for fractional degenerate convection-diffusion equations. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 28(3), 413–441 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Chapman, J.S., Rubinstein, J., Schatzman, M.: A mean-field model for superconducting vortices. Eur. J. Appl. Math. 7(2), 97–111 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  33. De Giorgi, E.: Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari. Mem. Accad. Sci. Torino, Cl. Sci. Fis. Mat. Nat. 3, 25–43 (1957)

    MathSciNet  Google Scholar 

  34. Denzler, J., McCann, R.: Phase transitions and symmetry breaking in singular diffusion. Proc. Natl. Acad. Sci. USA 100, 6922–6925 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. De Pablo, A., Quirós, F., Rodriguez, A., Vázquez, J.L.: A fractional porous medium equation. Adv. Math. 226(2), 1378–1409 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. De Pablo, A., Quirós, F., Rodriguez, A., Vázquez, J.L.: A general fractional porous medium equation. arXiv:1104.0306v1 [math.AP]. Commun. Pure Appl. Math. (2011, to appear)

  37. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Preprint (2011)

    Google Scholar 

  38. E, W.: Dynamics of vortex-liquids in Ginzburg–Landau theories with applications to superconductivity. Phys. Rev. B 50(3), 1126–1135 (1994)

    Article  MathSciNet  Google Scholar 

  39. Einstein, A.: Über die von der molekularkinetischen Theorie der Wärme gefordete Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. (Leipz.) 17, 549–560 (1905). English translation: Investigations on the Theory of Brownian Movement. Dover, New York (1956)

    Article  MATH  Google Scholar 

  40. Friedman, A., Kamin, S.: The asymptotic behavior of gas in an N-dimensional porous medium. Trans. Am. Math. Soc. 262, 551–563 (1980). MR0586735 (81j:35054)

    MathSciNet  MATH  Google Scholar 

  41. Getoor, R.K.: First passage times for symmetric stable processes in space. Trans. Am. Math. Soc. 101, 75–90 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  42. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin (2001). Reprint of the 1998 edition

    MATH  Google Scholar 

  43. Head, A.K.: Dislocation group dynamics II. Similarity solutions of the continuum approximation. Philos. Mag. 26, 65–72 (1972)

    Article  Google Scholar 

  44. Kassmann, M.: A priori estimates for integro-differential operators with measurable kernels. Calc. Var. 34, 1–21 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. Kiselev, A., Nazarov, F., Volberg, A.: Global well-posedness for the critical 2D dissipative quasi-geostrophic equation. Invent. Math. 167(3), 445–453 (2007). MR2276260

    Article  MathSciNet  MATH  Google Scholar 

  46. Jara, M.: Hydrodynamic limit of particle systems with long jumps. Preprint. http://arxiv.org/abs/0805.1326

  47. Jara, M.: Nonequilibrium scaling limit for a tagged particle in the simple exclusion process with long jumps. Commun. Pure Appl. Math. 62(2), 198–214 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  48. Jara, M., Komorowski, T., Olla, S.: Limit theorems for additive functionals of a Markov chain. Ann. Appl. Probab. 19(6) (2009) 2270–2300

    Article  MathSciNet  MATH  Google Scholar 

  49. Ladyzhenskaya, O.A., Uraltseva, N.N.: Linear and Quasilinear Equations of Elliptic Type. Nauka, Moscow (1964). Academic Press, New York (1968) (in Russian). MR 0244627 (39:5941)

    MATH  Google Scholar 

  50. Ladyzhenskaya, O.A., Solonnikov, V.A., Ural’tseva, N.N.: Linear and Quasilinear Equations of Parabolic Type. Transl. Math. Monographs, vol. 23. Am. Math. Soc., Providence (1968)

    Google Scholar 

  51. Landkof, N.S.: Foundations of Modern Potential Theory. Die Grundlehren der mathematischen Wissenschaften, Band 180. Springer, New York (1972). Translated from the Russian by A.P. Doohovskoy

    Book  MATH  Google Scholar 

  52. Lee, K.A., Vázquez, J.L.: Geometrical properties of solutions of the porous medium equation for large times. Indiana Univ. Math. J. 52(4), 991–1016 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  53. Lin, F.H., Zhang, P.: On the hydrodynamic limit of Ginzburg–Landau vortices. Discrete Contin. Dyn. Syst. 6, 121–142 (2000)

    MathSciNet  MATH  Google Scholar 

  54. Lions, P.L., Mas-Gallic, S.: Une méthode particulaire déterministe pour des équations diffusives non linéaires. C. R. Acad. Sci. Paris, Sér. I 332, 369–376 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  55. Mellet, A., Mischler, S., Mouhot, C.: Fractional diffusion limit for collisional kinetic equations. Preprint. http://arxiv.org/abs/0809.2455

  56. Oleinik, O.A., Kalashnikov, A.S., Chzou, Y.-I.: The Cauchy problem and boundary problems for equations of the type of unsteady filtration. Izv. Akad. Nauk SSSR, Ser. Mat. 22, 667–704 (1958)

    MathSciNet  MATH  Google Scholar 

  57. Peletier, L.A.: The porous media equation. In: Amann, H. (ed.) Application of Nonlinear Analysis in the Physical Sciences, pp. 229–242. Pitman, London (1981)

    Google Scholar 

  58. Serfaty, S., Vázquez, J.L.: Work in preparation

    Google Scholar 

  59. Signorini, A.: Questioni di elasticità non linearizzata e semilinearizzata. Rend. Mat. Appl. 18, 95–139 (1959)

    MathSciNet  MATH  Google Scholar 

  60. Silvestre, L.E.: Hölder estimates for solutions of integro differential equations like the fractional Laplace. Indiana Univ. Math. J. 55(3), 1155–1174 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  61. Silvestre, L.E.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60(1), 6–112 (2007)

    Article  MathSciNet  Google Scholar 

  62. Smoluchowski, M.: Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen. Ann. Phys. 21, 756–780 (1906) (in German). Previously, Bull. Int. Acad. Sci. Cracovie, 46 A (1906) (in Polish)

    Article  MATH  Google Scholar 

  63. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, vol. 30. Princeton University Press, Princeton (1970). MR0290095 (44 #7280)

    MATH  Google Scholar 

  64. Valdinoci, E.: From the long jump random walk to the fractional Laplacian. Bol. Soc. Esp. Mat. Apl. 49, 33–44 (2009)

    MathSciNet  MATH  Google Scholar 

  65. Vázquez, J.L.: Asymptotic behaviour for the Porous Medium Equation posed in the whole space. J. Evol. Equ. 3, 67–118 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  66. Vázquez, J.L.: Asymptotic behaviour for the PME in a bounded domain. The Dirichlet problem. Monatshefte Math. 142(1–2), 81–111 (2004)

    Article  MATH  Google Scholar 

  67. Vázquez, J.L.: Smoothing and Decay Estimates for Nonlinear Diffusion Equations. Equations of Porous Medium Type. Oxford Lecture Series in Mathematics and Its Applications, vol. 33. Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

  68. Vázquez, J.L.: The Porous Medium Equation. Mathematical Theory. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford (2007)

    MATH  Google Scholar 

  69. Vázquez, J.L.: Perspectives in nonlinear diffusion. Between analysis, physics and geometry. In: Sanz-Solé, M., et al. (eds.) Proceedings of the International Congress of Mathematicians, ICM Madrid 2006, vol. 1, pp. 609–634. Eur. Math. Soc. Pub. House, Zurich (2007)

    Chapter  Google Scholar 

  70. Villani, C.: Topics in Optimal Transportation. Am. Math. Soc., Providence (2003)

    MATH  Google Scholar 

  71. Vlahos, L., Isliker, H., Kominis, Y., Hizonidis, K.: Normal and anomalous Diffusion: a tutorial. In: Bountis, T. (ed.) Order and Chaos, vol. 10. Patras University Press, Patras (2008)

    Google Scholar 

  72. Weitzner, H., Zaslavsky, G.M.: Some applications of fractional equations. Chaotic transport and complexity in classical and quantum dynamics. Commun. Nonlinear Sci. Numer. Simul. 8(3–4), 273–281 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  73. Zel’dovich, Ya.B., Kompaneets, A.S.: Towards a theory of heat conduction with thermal conductivity depending on the temperature. In: Collection of Papers Dedicated to 70th Anniversary of A.F. Ioffe, pp. 61–72. Izd. Akad. Nauk SSSR, Moscow (1950)

    Google Scholar 

Download references

Acknowledgements

Author partially supported by Spanish Project MTM2008-06326-C02. The author is grateful to the referee and N. Guillén for carefully reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Luis Vázquez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vázquez, J.L. (2012). Nonlinear Diffusion with Fractional Laplacian Operators. In: Holden, H., Karlsen, K. (eds) Nonlinear Partial Differential Equations. Abel Symposia, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25361-4_15

Download citation

Publish with us

Policies and ethics