Convergence of Wigner Transforms in a Semiclassical Limit

  • Luigi Ambrosio
Part of the Abel Symposia book series (ABEL, volume 7)


We prove convergence of the Wigner transforms of solutions to the Schrödinger equation, in a semiclassical limit, to solutions to the Liouville equation. We are able to include in our convergence result rough or singular potentials (with Coulomb repulsive singularities), provided convergence is understood for “almost all” initial data. The rigorous statement involves a suitable extension of the DiPerna–Lions theory to the infinite-dimensional space of probability measure, where both the Wigner and the Liouville dynamics can be read.


Convergence Result Liouville Equation Semiclassical Limit Uniform Decay Operator Inequality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ambrosio, L.: Transport equation and Cauchy problem for BV vector fields. Invent. Math. 158, 227–260 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Ambrosio, L.: Transport equation and Cauchy problem for non-smooth vector fields. In: Dacorogna, B., Marcellini, P. (eds.) Calculus of Variations and Non-Linear Partial Differential Equations. CIME Series, Cetraro, 2005. Lecture Notes in Mathematics, vol. 1927, pp. 2–41 (2008) CrossRefGoogle Scholar
  3. 3.
    Ambrosio, L., Figalli, A.: Almost everywhere well-posedness of continuity equations with measure initial data. CRAS 348, 249–252 (2010) MathSciNetzbMATHGoogle Scholar
  4. 4.
    Ambrosio, L., Friesecke, G., Giannoulis, J.: Passage from quantum to classical molecular dynamics in the presence of Coulomb interactions. Commun. Partial Differ. Equ. 35, 1490–1515 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Ambrosio, L., Figalli, A., Friesecke, G., Giannoulis, J., Paul, T.: Semiclassical limit of quantum dynamics with rough potentials and well posedness of transport equations with measure initial data. Commun. Pure Appl. Math. 64, 1199–1242 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Bouchut, F.: Renormalized solutions to the Vlasov equation with coefficients of bounded variation. Arch. Ration. Mech. Anal. 157, 75–90 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    DiPerna, R.J., Lions, P.L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98, 511–547 (1989) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Fermanian-Kammerer, C., Gérard, P.: Mesures semi-classiques et croisement de modes. Bull. Soc. Math. Fr. 130, 123–168 (2002) zbMATHGoogle Scholar
  9. 9.
    Fermanian-Kammerer, C., Gérard, P.: A Landau–Zener formula for non-degenerated involutive codimension 3 crossings. Ann. Henri Poincaré 4, 513–552 (2003) zbMATHCrossRefGoogle Scholar
  10. 10.
    Figalli, A., Ligabó, M., Paul, T.: Work in progress Google Scholar
  11. 11.
    Gérard, P.: Mesures semi-classiques et ondes de Bloch. In: Seminaire sur les Équations aux Dérivées Partielles, 1990–1991. Exp. No. XVI, 19 pp. École Polytechnique, Palaiseau (1991) Google Scholar
  12. 12.
    Lions, P.L., Paul, T.: Sur les mesures de Wigner. Rev. Mat. Iberoam. 9, 553–618 (1993) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Scuola Normale SuperiorePisaItaly

Personalised recommendations