Skip to main content

Fundamental Combustion Characteristics of Hydrogenous Mixtures

  • Chapter
  • First Online:
  • 2213 Accesses

Part of the book series: Shock Wave and High Pressure Phenomena ((SHOCKWAVE))

Abstract

A laminar flame velocity is one of the fundamental characteristics of premixed combustible gas reactivity. It specifies an amount of mixture reacting across a unit flame front area per unit time. According to the classical definition, a laminar flame (combustion) velocity is the expansion rate of a flat one-dimensional flame front in the direction normal to the wave surface with respect to the unburned gas [1].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ya.B. Zeldovich, G.I. Barenblatt, V.B. Librovich, G.M. Makhviladze, The Mathematical Theory of Combustion and Explosions (Consultants Bureau, New York, 1985), p. 597

    Google Scholar 

  2. B. Lewis, G. Von Elbe, Combustion, Flames and Explosion of Gases, 3rd edn. (Academic, Orlando, 1987), p. 739

    Google Scholar 

  3. G.H. Markstein, Experimental and theoretical studies of flame front stability. J. Aeronaut. Sci. 18, 199–209 (1951)

    Google Scholar 

  4. G.H. Markstein, Instability phenomena in combustion waves. Proc. Combust. Inst. 4, 44–59 (1953)

    Google Scholar 

  5. F.A. Williams, Combustion Theory: The Fundamental Theory of Chemically Reacting Flow Systems, 2nd edn. (Benjamin Cummings, Menlo Park, 1985)

    Google Scholar 

  6. Y.Y. Zhang, J.H. Wu, S. Ishizuka, Hydrogen addition effect on laminar burning velocity, flame temperature and flame stability of a planar and curved CH4 + H2 + Air premixed flame. Int. J. Hydrogen Energy 34(2), 519–527 (2009)

    Google Scholar 

  7. P. Clavin, Dynamic behavior of premixed flame fronts in laminar and turbulent flows. Prog. Energy Combust. Sci. 11, 1–59 (1985)

    Google Scholar 

  8. C.K. Law, C.J. Sung, Structure, aerodynamics, and geometry of premixed flamelets. Prog. Energy Combust. Sci. 26, 459–505 (2000)

    Google Scholar 

  9. O.C. Kwon, G.M. Faeth, Flame/stretch interactions of premixed hydrogen-fueled flames: measurements and predictions. Combust. Flame 124, 590–610 (2001)

    Google Scholar 

  10. J.K. Bechtold, M. Matalon, Effects of stoichiometry on stretched premixed flames. Combust. Flame 119, 217–232 (1999)

    Google Scholar 

  11. J.K. Bechtold, M. Matalon, The dependence of the Markstein length on stoichiometry. Combust. Flame 127, 1906–1913 (2001)

    Google Scholar 

  12. K.T. Aung, M.I. Hassan, G.M. Faeth, Flame stretch interactions of laminar premixed hydrogen/air flames at normal temperature and pressure. Combust. Flame 109, 1–24 (1997)

    Google Scholar 

  13. P. Clavin, G. Joulin, Flamelet library for turbulent wrinkled flames. Lecture notes in engineering: turbulent reactive flows, vol. 40, 1989, pp. 213–239

    Google Scholar 

  14. S.D. Lee, D.H. Chung, S.H. Chung, Local equilibrium temperature as a measure of stretch and preferential diffusion effects in counterflow H2/air premixed flames. Proc. Combust. Inst. 27, 579–585 (1998)

    Google Scholar 

  15. M.J. Brown, I.C. McLean, D.B. Smith, S.C. Taylor, Markstein lengths of CO/H2/air flames, using expanding spherical flames. Proc. Combust. Inst. 26, 875–881 (1996)

    Google Scholar 

  16. C.J. Sun, C.J. Sung, L. He, C.K. Law, Dynamics of weakly stretched flames: quantitative description and extraction of global flame parameters. Combust. Flame 118, 108–128 (1999)

    Google Scholar 

  17. G.I. Sivashinsky, Instabilities, pattern formation, and turbulence in flames. Ann. Rev. Fluid Mech. 15, 179–199 (1983)

    MATH  Google Scholar 

  18. Бapeнблaтт Г.И., Зeльдoвич Я.Б., Иcтpaтoв A.Г. O диффузиoннo-тeплoвoй уcтoйчивocти лaминapнoгo плaмeни//ПMTФ, 1962, № 4. C. 21–26 (G.I. Barenblatt, Ya.B. Zeldovich, A.G. Istratov, On diffusion-thermal stability of laminar flame. Zh. Prikl. Mehan. Tehn. Fiziki 4, 21–26 (1962)

    Google Scholar 

  19. A.G. Istratov, V.B. Librovich, On the stability of propagation of spherical flames. J. Appl.Mech.Tech.Phys. 7(1), 43–50 (1966)

    Google Scholar 

  20. M.L. Frankel, G.I. Sivashinsky, Fingering instability in nonadiabatic low-Lewis-number flames. Phys. Rev. E 52, 6154–6158 (1995)

    Google Scholar 

  21. O.C. Kwon, G. Rozenchan, C.K. Law, Cellular instabilities and self-acceleration of outwardly propagating spherical flames. Proc. Combust. Inst. 29, 1775–1783 (2002)

    Google Scholar 

  22. L.Z. Ma, J. Chomiak, Asymptotical flame shapes and speeds of hydrodynamically unstable laminar flames. Proc. Combust. Inst. 27, 545–553 (1998)

    Google Scholar 

  23. K.L. Pan, J. Qian, C.K. Law, W. Shy, The role of hydrodynamic instability in flame-vortex interaction. Proc. Combust. Inst. 29, 1695–1704 (2002)

    Google Scholar 

  24. R. Addabbo, J.K. Bechtold, M. Matalon, Wrinkling of spherically expanding flames. Proc. Combust. Inst. 29, 1527–1535 (2002)

    Google Scholar 

  25. R.C. Aldredge, B. Zuo, Flame acceleration associated with the Darrieus-Landau instability. Combust. Flame 127, 2091–2101 (2001)

    Google Scholar 

  26. S.S. Minaev, E.A. Pirogov, O.V. Sharypov, A nonlinear model for hydrodynamic instability of an expanding flame. Combust. Explo. Shock Waves 32(5), 481–488 (1996)

    Google Scholar 

  27. F.C. Gouldin, An application of fractals to modeling premixed turbulent flames. Combust. Flame 68, 249–266 (1987)

    Google Scholar 

  28. M. Murayama, T. Takeno, Fractal-like character of flamelets in turbulent premixed combustion. Proc. Combust. Inst. 22, 551–559 (1988)

    Google Scholar 

  29. Yu.A. Gostintsev, A.G. Istratov, Yu.V. Shulenin, Self-similar propagation of a free turbulent flame in mixed gas mixtures. Combust. Explo. Shock Waves 24(5), 563–569 (1988)

    Google Scholar 

  30. Гocтинцeв Ю.A., Иcтpaтoв A.Г., Фopтoв B.E. O фpaктaльнoй cтpуктуpe туpбулeнтнoгo cфepичecкoгo плaмeни//Дoклaды PAH, 1997. T. 353, № 1. C. 55–56 (Yu.A. Gostintsev, A.G. Istratov, V.E. Fortov, On fractal structure of turbulent spherical flame. Doklady RAN 353(1) 55–56 (1997))

    Google Scholar 

  31. Гocтинцeв Ю.A., Иcтpaтoв A.Г., Кидин H.И., Фopтoв B.E. Aвтoтуpбулизaция гaзoвыx плaмeн. Teopeтичecкиe тpaктoвки//TBT, 1999. T. 37, p. 633–637 (Yu.A. Gostintsev, A.G. Istratov, N.I. Kidin, Auto-turbulization of gaseous flames. Theoretical treatments. Teplofiz. Visokih Temper. 37, 633–637 (1999))

    Google Scholar 

  32. Гocтинцeв Ю.A., Иcтpaтoв A.Г., Кидин H.И., Фopтoв B.E. Aвтoтуpбулизaция гaзoвыx плaмeн. Aнaлиз экcпepимeнтaльныx peзультaтoв//TBT, 1999. V. 37, p. 306–312 (Yu.A. Gostintsev, A.G. Istratov, N.I. Kidin, V.E. Fortov, Auto-turbulization of gaseous flames. Analysis of experimental data. Teplofiz. Visokih Temper. 37, 306–312 (1999))

    Google Scholar 

  33. V.V. Bychkov, M.A. Liberman, Stability and the fractal structure of a spherical flame in a self-similar regime. Phys. Rev. Lett. 76, 2814–2817 (1996)

    Google Scholar 

  34. J. Manton, G. von Elbe, B. Lewis, Nonisotropic propagation of combustion waves in explosive gas mixtures and the development of cellular flames. J. Chem. Phys. 20, 153–157 (1952)

    Google Scholar 

  35. V.P. Karpov, Cellular flame structure under conditions of a constant-volume bomb and its relationship with vibratory combustion. Combust. Explos. Shock Waves 1(3), 39–42 (1965)

    Google Scholar 

  36. K.I. Shchelkin, Intensification of weak shock waves by a cellular flame. Combust. Explos. Shock Waves 2(2), 20–21 (1966)

    Google Scholar 

  37. G.I. Sivashinsky, Diffusion-thermal theory of cellular flames. Combust. Sci. Technol. 15, 137–145 (1977)

    Google Scholar 

  38. T. Mitani, F.A. Williams, Cellular hydrogen flames. Arch. Combust. 1, 61–67 (1981)

    Google Scholar 

  39. S. Kadowaki, Numerical study on the formation of cellular premixed flames at high Lewis numbers. Phys. Fluids 12, 2352–2359 (2000)

    MATH  Google Scholar 

  40. R.G. Abdel-Gayed, D. Bradley, M. Lawes, Turbulent burning velocities: a general correlation in terms of straining rates. Proc. R. Soc. Lond. A414, 389–413 (1987)

    Google Scholar 

  41. R.G. Abdel-Gayed, D. Bradley, F.K. Lung, Combustion regimes and the straining of turbulent premixed flames. Combust. Flame 76, 213–218 (1989)

    Google Scholar 

  42. D. Bradley, A.K.S. Lau, M. Laws, Flame stretch rate as a determinant of turbulent burning velocity. Philos. Trans. R. Soc. Lond. A338, 359–387 (1992)

    Google Scholar 

  43. D. Bradley, How fast can we burn? Proc. Combust. Inst. 24, 247–262 (1992)

    Google Scholar 

  44. K.J. Al-Khishali, D. Bradley, S.F. Hall, Turbulent combustion of near-limit hydrogen-air mixtures. Combust. Flame 54, 61–70 (1983)

    Google Scholar 

  45. R.G. Abdel-Gayed, D. Bradley, M. Lawes, F.K. Lung, Premixed turbulent burning during explosions. Proc. Combust. Inst. 21, 497–504 (1986)

    Google Scholar 

  46. N. Peters, Turbulent Combustion (Cambridge University Press, Cambridge, 2000), p. 320

    MATH  Google Scholar 

  47. F.A. Williams, Progress in knowledge of flamelet structure and extinction. Prog. Energy Combust. Sci. 26, 657–682 (2000)

    Google Scholar 

  48. R. Borghi, On the structure and morphology of turbulent premixed flames, in Recent Advances in Aerospace Science, ed. by C. Bruno, S. Casci (Pergamon, London, 1984), pp. 117–138

    Google Scholar 

  49. V. Schroeder, K. Holtappel, Explosion characteristics of hydrogen -air and hydrogen-oxygen mixtures at elevated pressure. International Conference on Hydrogen Safety, Pisa, 2005

    Google Scholar 

  50. G. Dixon-Levis, Kinetic mechanism, structure and properties of premixed flames in H2 + N2 + O2 mixtures. Philos. Trans. R. Soc. Lond. A292(1388), 45–99 (1979)

    Google Scholar 

  51. K.S. Raman, Laminar burning velocities of lean hydrogen-air mixtures. EDL report FM97-15.GALCIT, 1998

    Google Scholar 

  52. C.L. Tang, Z.H. Huang, C. Jin, J.J. He, J.H. Wang, X.B. Wang, H.Y. Miao, Explosion characteristics of H2 + N2 + Air mixtures at elevated pressures and temperatures. Int. J. Hydrogen Energy 34(2), 554–561 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gelfand, B.E., Silnikov, M.V., Medvedev, S.P., Khomik, S.V. (2012). Fundamental Combustion Characteristics of Hydrogenous Mixtures. In: Thermo-Gas Dynamics of Hydrogen Combustion and Explosion. Shock Wave and High Pressure Phenomena. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25352-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25352-2_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25351-5

  • Online ISBN: 978-3-642-25352-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics