A Comparative Review of Two-Pass Connected Component Labeling Algorithms

  • Uriel H. Hernandez-Belmonte
  • Victor Ayala-Ramirez
  • Raul E. Sanchez-Yanez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7095)

Abstract

In this paper, we show a comparative review of Connected Component Labeling (CCL) methods, focused in two-pass variants, including their elements and implementation issues. We analyze the main elements used by these CCL algorithms and their importance for the performance of the methods using them. We present some experiments using a complex image set and evaluating the performance of each algorithm under analysis.

Keywords

Root Node Connectivity Analysis Background Pixel Foreground Pixel Comparative Review 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chang, F., Chen, C.-J.: A component-labeling algorithm using contour tracing technique. In: International Conference on Document Analysis and Recognition, pp. 741–745 (2003)Google Scholar
  2. 2.
    Chang, F., Chen, C.-J., Lu, C.-J.: A linear-time component-labeling algorithm using contour tracing technique. Computer Vision and Image Understanding 93(2), 206–220 (2004)CrossRefGoogle Scholar
  3. 3.
    Di Stefano, L., Bulgarelli, A.: A simple and efficient connected components labeling algorithm. In: International Conference on Image Analysis and Processing, pp. 322–327 (1999)Google Scholar
  4. 4.
    Dillencourt, M.B., Samet, H.: A general approach to connected-component labeling for arbitrary image representations. Journal of the ACM 39(2), 253–280 (1992)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Fiorio, C., Gustedt, J.: Two linear time Union Find strategies for image processing. Theoretical Computer Science 154(2), 165–181 (1996)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Haralick, R.M.: Some Neighborhood Operations. In: Real Time/Parallel Computing Image Analysis, pp. 11–35. Plenum Press (1981)Google Scholar
  7. 7.
    He, L., Chao, Y., Suzuki, K.: A linear-time two-scan labeling algorithm. In: International Conference on Image Processing, pp. 241–244 (2007)Google Scholar
  8. 8.
    He, L., Chao, Y., Suzuki, K.: A run-based two-scan labeling algorithm. IEEE Transactions on Image Processing 17(5), 749–756 (2008)MathSciNetCrossRefGoogle Scholar
  9. 9.
    He, L., Chao, Y., Suzuki, K., Wu, K.: Fast connected-component labeling. Pattern Recognition 42(9), 1977–1987 (2009)CrossRefMATHGoogle Scholar
  10. 10.
    Rosenfeld, A., Pfaltz, J.L.: Sequential operations in digital picture processing. Journal of the ACM 13(4), 471–494 (1966)CrossRefMATHGoogle Scholar
  11. 11.
    Wang, X., Davis, W.A.: Connected component labeling using modified linear quadtrees. In: Graphics Interface 1986, pp. 235–240 (1986)Google Scholar
  12. 12.
    Wu, K., Otoo, E., Suzuki, K.: Two strategies to speed up connected component labeling algorithms. Tech Report LBNL-59102 (2005)Google Scholar
  13. 13.
    Wu, K., Otoo, E., Suzuki, K.: Optimizing two-pass connected-component labeling algorithms. Pattern Analysis and Applications 12, 117–135 (2009)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Uriel H. Hernandez-Belmonte
    • 1
  • Victor Ayala-Ramirez
    • 1
  • Raul E. Sanchez-Yanez
    • 1
  1. 1.Universidad de Guanajuato DICISSalamancaMexico

Personalised recommendations