Modeling Prey-Predator Dynamics via Particle Swarm Optimization and Cellular Automata

  • Mario Martínez-Molina
  • Marco A. Moreno-Armendáriz
  • Nareli Cruz-Cortés
  • Juan Carlos Seck Tuoh Mora
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7095)

Abstract

Through the years several methods have been used to model organisms movement within an ecosystem modelled with cellular automata, from simple algorithms that change cells state according to some pre-defined heuristic, to diffusion algorithms based on the one dimensional Navier - Stokes equation or lattice gases. In this work we show a novel idea since the predator dynamics evolve through Particle Swarm Optimization.

Keywords

Particle Swarm Optimization Cellular Automaton Cellular Automaton Prey Density Inertia Weight 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antal, T., Droz, M.: Phase transitions and oscillations in a lattice prey-predator model. Physical Review E 63 (2001)Google Scholar
  2. 2.
    Banks, A., Vincent, J., Anyakoha, C.: A review of particle swarm optimization Part I: background and development. Natural Computing 6(4) (2007)Google Scholar
  3. 3.
    Begon, M., Townsend, C.R., Harper, J.L.: Ecology: From Individuals to Ecosystems, 4th edn. Blackwell Publishing (2006)Google Scholar
  4. 4.
    Comins, H.N., Hassell, M.P., May, R.M.: The spatial dynamics of host-parasitoid systems. The Journal of Animal Ecology 61(3), 735–748 (1992)CrossRefGoogle Scholar
  5. 5.
    Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39–43 (1995)Google Scholar
  6. 6.
    Kari, J.: Theory of cellular automata: a survey. Theoretical Computer Science 334, 3–33 (2005)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Kennedy, J., Eberhart, R.C., Shi, Y.: Swarm Intelligence, 1st edn. Morgan Kauffman (2001)Google Scholar
  8. 8.
    van der Laan, J.D., Lhotka, L., Hogeweg, P.: Sequential predation: A multi-model study. Journal of Theoretical Biology 174, 149–167 (1995)CrossRefGoogle Scholar
  9. 9.
    Mccauley, E., Wilson, W.G., de Roos, A.M.: Dynamics of age-structured and spatially structured predator-prey interactions: Individual-based models and population-level formulations. American Naturalist 142(3), 412–442 (1993)CrossRefGoogle Scholar
  10. 10.
    Pekalski, A.: A short guide to predator-prey lattice models. Computing in Science and Engineering 6(1) (2004)Google Scholar
  11. 11.
    Shi, Y., Liu, H., Gao, L., Zhang, G.: Cellular particle swarm optimization. In: Information Sciences - ISCI (2010)Google Scholar
  12. 12.
    Wolff, W.F.: Microinteractive predator-prey simulations. Ecodynamics: Contributions to Theoretical Ecology pp. 285–308 (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mario Martínez-Molina
    • 1
  • Marco A. Moreno-Armendáriz
    • 1
  • Nareli Cruz-Cortés
    • 1
  • Juan Carlos Seck Tuoh Mora
    • 2
  1. 1.Centro de Investigación en Computación, Instituto Politécnico NacionalMéxicoMéxico
  2. 2.Centro de Investigación Avanzada en Ingeniería IndustrialUniversidad Autónoma del Estado de HidalgoPachucaMéxico

Personalised recommendations