Strategy Patterns Prediction Model (SPPM)

  • Aram B. González
  • Jorge A. Ramírez Uresti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7094)


Multi-agent systems are broadly known for being able to simulate real-life situations which require the interaction and cooperation of individuals. Opponent modeling can be used along with multi-agent systems to model complex situations such as competitions like soccer games. In this paper, a model for predicting opponent moves is presented. The model is based around an offline step (learning phase) and an online one (execution phase). The offline step is the one that gets and analyses previous experiences while the online step is the one that uses the data generated by offline analysis to predict opponent moves. This model is illustrated by an experiment with the RoboCup 2D Soccer Simulator.


Case Based Reasoning Multi-agent Systems Opponent Modeling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arias, M.: Definición de una Arquitectura para la Generación y Selección de Estrategias en Equipos de Fútbol Robótico. Tesis para la Maestría en Ciencias Computacionales, Instituto Técnológico y de Estudios Superiores de Monterrey, México (2008)Google Scholar
  2. 2.
    Berger, R., Herfert, D.: AT Humbolt Team Description 2009. In: RoboCup International Symposium 2009. RoboCup, Craz Austria (2009)Google Scholar
  3. 3.
    Del Giudice, A., Gmytrasiewicz, P.: Towards Strategic Kriegspiel Play with Opponent Modeling. In: AAAI Spring Symposia. AAAI, Stanford (2007)Google Scholar
  4. 4.
    Kuhlmann, G., Knox, W., Stone, P.: Know Thine Enemy: A Champion RoboCup Coach Agent. In: Proceedings of the Twenty-First National Conference on Artificial Intelligence, pp. 1463–1468. AAAI, Massachusetts (2006)Google Scholar
  5. 5.
    Laviers, K., Sukthankar, G., Molineaux, M., Aha, D.W.: Improving Offensive Performance Through Opponent Modeling. In: Proceedings of the Fifth Artificial Intelligence for Interactive Digital Entertainment Conference, pp. 58–63. AAAI, Stanford (2009)Google Scholar
  6. 6.
    McCracken, P., Bowling, M.: Safe Strategies for Agent Modelling in Games. In: AAAI 2004 Fall Symposia. AAAI, Virginia (2004)Google Scholar
  7. 7.
    Parker, A., Nau, D., Subrahmanian, V.: Overconfidence or Paranoia? Search in Imperfect-Information Games. In: The Twenty-First National Conference on Artificial Intelligence, pp. 1045–1050. AAAI, Boston (2006)Google Scholar
  8. 8.
    Richards, M., Amir, E.: Opponent Modeling in Scrabble. In: Twentieth International Joint Conference on Artificial Intelligence, pp. 1482–1487. IJCAI, Hyderabad (2007)Google Scholar
  9. 9.
    RoboCup (n.d.). Retrieved from RoboCup,
  10. 10.
    Stone, P., Riley, P., Veloso, M.: Defining and Using Ideal Teammate and Opponent Agent Models. In: Proceedings of the Twelfth Annual Conference on Innovative Applications of Artificial Intelligence. AAAI, Austin (2000)Google Scholar
  11. 11.
    Wooldridge, M.: An Introduction to MultiAgent Systems. Bell & Bain, Glasglow (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Aram B. González
    • 1
  • Jorge A. Ramírez Uresti
    • 1
  1. 1.Departamento de Tecnologías de Información y ComputaciónInstituto Tecnologico y de Estudios Superiores de MonterreyEstado de MéxicoMéxico

Personalised recommendations