Development of a System of Electrodes for Reading Consents-Activity of an Amputated Leg (above the knee) and Its Prosthesis Application

  • Emilio Soto
  • Jorge Antonio Ascencio
  • Manuel Gonzalez
  • Jorge Arturo Hernandez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7094)


It is reported the design of electrodes which was standardized and positioned based on the anatomy study and motor units, identified by the nerve branches of an amputated leg (above the knee)[1], obtaining the myoelectric signals of maximum amplitude of 20 μV [2]. The initial identification of the optimal position of the electrode was characterized with myoelectrography in order to determine the movements that the patient makes consciously. The myoelectrical signal was accomplish by taking into account electrochemical schema of the the cellular membrane [3] based on the fields and frequencies, recognized by the circuit structural materials that provide sufficient resistivity to the spurious frequencies [4], isolating each motor unit [5]. The results show that it is possible to have a cleaned signal which describes the movement that the patient desires consciously and the application in a prosthesis.


Parameterizations myoelectric structured material Myoelectrical 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Drake, R.L., Vogl, W., Mitchell, A.W.M.: View points fitting of prostheses. Elsevier, Madrid (2007)Google Scholar
  2. 2.
    Malmivuo, J.: Understanding the myoelectric signal. Oxford University Press, New York (1995)Google Scholar
  3. 3.
    Rosch, P.J., Markov, M.S.: Understanding the myoelectric signal. Marcel Dekker, New York (2004)Google Scholar
  4. 4.
    Wang, S., Chung, D.L.L.: Electrical behavior of carbon fiber polymer-matrix composites in the through-thickness direction. Journal of Materials Science 25, 91–100 (2000)CrossRefGoogle Scholar
  5. 5.
    de Pablo Gomez Navarro, P.J., Herrero, J.G., Biel, B., Vidal, J.G., Rubio, A., Flores, F.: Controlling the conductance of singlewalled carbon nanotubes. Departamento de Física de Materia Condensada, Universidad Autónoma de Madrid 4, 103–108 (2000)Google Scholar
  6. 6.
    Rosch, P.J., Markov, M.S.: Bioelectromagnetic medicine. Computers and the Humanities 34, 103–108 (2000)CrossRefGoogle Scholar
  7. 7.
    Schrader, L., Jakob, H.D., Müller, H.P., Niggemann, J.: Mezclas de resinas de reacción termoendurecibles y su uso. Traduccion De Patente Europea T3, Patente. 2 121 252, Solicitud: 95106227.2, k86 Número de publicación: 0 682 048, k87 (1995) Patente. 2 121 252Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Emilio Soto
    • 1
    • 2
  • Jorge Antonio Ascencio
    • 3
  • Manuel Gonzalez
    • 4
  • Jorge Arturo Hernandez
    • 1
    • 2
  1. 1.Division of Graduate Studies and ResearchTechnological Institute of Puebla
  2. 2.Biomedical Engineering S.R. M.I. de C.V.INBIOMéxico
  3. 3.Institute of Physics, Circuit of the Scientific Research in University CityNational Autonomous University of MexicoMéxico
  4. 4.Puebla State, Graduate of Biomedical EngineeringAutonomous Popular UniversityPuebla, Pue.Mexico

Personalised recommendations