Genetic Selection of Fuzzy Model for Acute Leukemia Classification

  • Alejandro Rosales-Pérez
  • Carlos A. Reyes-García
  • Pilar Gómez-Gil
  • Jesus A. Gonzalez
  • Leopoldo Altamirano
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7094)


Leukemia is a disease characterized by an abnormal increase of white blood cells. This disease is divided into two types: lymphoblastic and myeloid, each of which is divided in subtypes. Differentiating the type and subtype of acute leukemia is important in order to determine the correct type of treatment to be assigned by the affected person. Diagnostic tests available today, such as those based on cell morphology, have a high error rate. Others, as those based on cytometry or microarray, are expensive. In order to avoid those drawbacks this paper proposes the automatic selection of a fuzzy model for accurate classification of types and subtypes of acute leukemia based on cell morphology. Our experimental results reach up to 93.52% in classification of acute leukemia types, 87.36% in lymphoblastic subtypes and 94.42% in myeloid subtypes. Our results show a significant improvement compared with classifiers which parameters were manually tuned using the same data set. Details of the proposed method, as well as experiments and results are shown.


Leukemia classification selection of fuzzy model genetic algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adjouadi, M., Ayala, M., Cabrerizo, M., Zong, N., Lizarraga, G., Rossman, M.: Classification of leukemia blood samples using neural networks. Annals of Biomedical Engineering 38, 1473–1482 (2010),, doi:10.1007/s10439-009-9866-zCrossRefGoogle Scholar
  2. 2.
    Bennett, J.M., Catovsky, D., Daniel, M.T., Flandrin, G., Galton, D.A.G., Gralnick, H.R., Sultan, C.: Proposals for the classification of the acute leukaemias french-american-british (fab) co-operative group. British Journal of Haematology 33(4), 451–458 (1976), CrossRefGoogle Scholar
  3. 3.
    Bozzone, D.M.: The biology of cancer: Leukemia. Chelsea House Pub. (2009)Google Scholar
  4. 4.
    Engelbrecht, A.: Computational intelligence: an introduction, 2nd edn. Wiley (2007)Google Scholar
  5. 5.
    Galindo, M.C.: Obtención de características de subtipos de leucemia en imágenes digitales de células sanguíneas para su clasificación. Master’s thesis, Instituto Nacional de Astrofísica, Óptica y Electrónica (2008)Google Scholar
  6. 6.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning, 1st edn. Addison-Wesley Professional (January 1989),
  7. 7.
    Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., Lander, E.S.: Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 286(5439), 531–537 (1999), CrossRefGoogle Scholar
  8. 8.
    Holland, J.: Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor (1975)Google Scholar
  9. 9.
    Huang, C., Liao, W.: A comparative study of feature selection methods for probabilistic neural networks in cancer classification (2003)Google Scholar
  10. 10.
    Janikow, C., Faifer, M.: Fuzzy decision forest. In: 19th International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2000, pp. 218–221. IEEE (2000)Google Scholar
  11. 11.
    Kanth, B., Giridhar, B.: Gene expression based acute leukemia cancer classification: A neuro-fuzzy approach. International Journal of Biometrics and Bioinformatics (IJBB) 4(4), 136 (2010)Google Scholar
  12. 12.
    Keller, J.M., Gray, M.R., Givens Jr., J.A.: A fuzzy k-nearest neighbor algorithm. IEEE Transactions on Systems, Man, and Cybernetics 15(4), 580–585 (1985)CrossRefGoogle Scholar
  13. 13.
  14. 14.
    Morales, B.A.: Extracción de características en imágenes de células de médula ósea para la clasificación de leucemias agudas. Master’s thesis, Instituto Nacional de Astrofísica, Óptica y Electrónica (2007)Google Scholar
  15. 15.
    Reta, C., Altamirano, L., Gonzalez, J., Diaz, R., Guichard, J.: Segmentation of bone marrow cell images for morphological classification of acute leukemia. In: Proceedings of the Twenty-Third International Florida Artificial Intelligence Research Society Conference, FLAIRS 2010 (2010)Google Scholar
  16. 16.
    Reta, C.: Segmentación y clasificación de células con leucemia a partir de información contextual en imágenes digitales. Master’s thesis, Instituto Nacional de Astrofísica, Óptica y Electrónica (2009)Google Scholar
  17. 17.
    Reyes, C.: On the design of a fuzzy relational neural network for automatic speech recognition. Ph.D. thesis, Doctoral Dissertation, The Florida State University, Tallahassee, Fl (1994)Google Scholar
  18. 18.
    Su, M., Basu, M., Toure, A.: Multi-domain gating network for classification of cancer cells using gene expression data. In: Proceedings of the 2002 International Joint Conference on Neural Networks, IJCNN 2002, vol. 1, pp. 286–289. IEEE (2002)Google Scholar
  19. 19.
    Wang, H.: Intelligent Data Analysis: Developing New Methodologies Through Pattern Discovery and Recovery. IGI Global (2008)Google Scholar
  20. 20.
    Xu, R., Anagnostopoulos, G., Wunsch, D., et al.: Tissue classification through analysis of gene expression data using a new family of art architectures. In: Proceedings of the 2002 International Joint Conference on Neural Networks, IJCNN 2002, vol. 1, pp. 300–304. IEEE (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Alejandro Rosales-Pérez
    • 1
  • Carlos A. Reyes-García
    • 1
  • Pilar Gómez-Gil
    • 1
  • Jesus A. Gonzalez
    • 1
  • Leopoldo Altamirano
    • 1
  1. 1.Computer Science DepartmentNational Institute of Astrophysics, Optics and Electronics (INAOE)PueblaMexico

Personalised recommendations