Advertisement

The Evolution of Signal Communication for the e-puck Robot

  • Fernando Montes-Gonzalez
  • Fernando Aldana-Franco
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7094)

Abstract

In this paper we report our experiments with the e-puck robots for developing a communication system using evolutionary robotics. In order to do the latter we follow the evolutionary approach by using Neural Networks and Genetic Algorithms. The robots develop a communication scheme for solving tasks like: locating food areas, avoiding obstacles, approaching light sources and locating sound-sources (other robots emitting sounds). Evorobot* and Webots simulators are used as tools for computing the evolutionary process and optimization of the weights of neural controllers. As a consequence, two different kinds of neural controllers emerge. On one hand, one controller is used for robot movement; on the other hand the second controller process sound signals.

Keywords

Evolutionary Robotics Genetic Algorithms Mobile Robots 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mondana, F., Bonani, M.: The e-puck education robot, http://www.e-puck.org/
  2. 2.
    Trefzer, M.A., Kuyucu, T., Miller, J.F., Tyrrell, A.M.: Evolution and Analysis of a Robot Controller Based on a Gene Regulatory Network. In: Tempesti, G., Tyrrell, A.M., Miller, J.F. (eds.) ICES 2010. LNCS, vol. 6274, pp. 61–72. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)Google Scholar
  4. 4.
    Goldberg, D.E.: Genetic Algorithms. In: Search Optimization & Machine Learning. Addison Wesley Longman Inc. (2001)Google Scholar
  5. 5.
    Doncieux, S., Mouret, J.: Behavioral diversity measures for Evolutionary Robotics. In: IEEE Congress on Evolutionary Computation (2010)Google Scholar
  6. 6.
    Deb, K.: Multiobjectives optimization using evolutionary algorithms. Wiley (2001)Google Scholar
  7. 7.
    Mouret, J., Doncieux, S.: Overcoming the bootstrap problem in evolutionary robotics using behavioral diversity. In: Proceedings of the Eleventh Conference on Congress on Evolutionary Computation, Trondheim, Norway, May 18-21, pp. 1161–1168. IEEE Press, Piscataway (2009)Google Scholar
  8. 8.
    Reynolds, C.W.: Evolution of Obstacle Avoidance Behaviour: Using Noise to Promote Robust Solutions. In: Kinnear Jr., K. (ed.) Advances in Genetic Programming. MIT Press, Cambridge (1994)Google Scholar
  9. 9.
    Nolfi, S., Floreano, D.: Evolutionary Robotics. The MIT Press, USA (2000)Google Scholar
  10. 10.
    Santos, J., Duro, R.: Artificial Evolution and Autonomous Robotics. Ra–Ma Editorial, Spain (2004) (in Spanish)Google Scholar
  11. 11.
    Evorobot*, Evolutionary Robotics Simulator, http://laral.istc.cnr.it/evorobotstar/
  12. 12.
    Cyberbotics, Webots: Commercial Mobile Robot Simulation Software, http://www.cyberbotics.com
  13. 13.
    Marocco, D., Nolfi, S.: Self-Organization of Communication in Evolving Robots. In: Proc. 10th Int. Conf. Artificial Life: Alife, pp. 199–205. MIT Press, Boomington (2006)Google Scholar
  14. 14.
    De Greeff, J., Nolfi, S.: Evolution of communications in robots. In: Vargas, P., Di Paolo, E., Harvey, I., Husbands, P. (eds.) The Horizons for Evolutionary Robotics. The MIT Press (in press) (to appear)Google Scholar
  15. 15.
    Nolfi, S. and Marocco, D.: Evolving robots able to integrate sensory-motor information over Time. In: Theory of Biosciences, pp. 120:287–120:310 (2001)Google Scholar
  16. 16.
    Beer, R.D.: The dynamics of active categorical perception in an evolved model agent (with commentary and response). Adaptive Behavior 11(4), 209–243 (2003)CrossRefGoogle Scholar
  17. 17.
    Cianci, C.M., Raemy, X., Pugh, J., Martinoli, A.: Communication in a Swarm of Miniature Robots: The e-Puck as an Educational Tool for Swarm Robotics. In: Şahin, E., Spears, W.M., Winfield, A.F.T. (eds.) SAB 2006 Ws 2007. LNCS, vol. 4433, pp. 103–115. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Fernando Montes-Gonzalez
    • 1
  • Fernando Aldana-Franco
    • 1
  1. 1.Department of Artificial IntelligenceUniversidad VeracruzanaXalapaMexico

Personalised recommendations